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Summary. Orthoposets are defined. The approach is the standard one via order rela-
tion similar to common text books on algebra liké [9].

MML Identifier: OPOSET_1.

WWW: http://mizar.org/JFM/Voll5/oposet_1.html

The articles[[12],[[14],6],[1B],015],[17],14],[116][16],[183],[10]/[18]12],17],[L], and[11] provide
the notation and terminology for this paper.

1. GENERAL NOTIONS AND PROPERTIES

In this papeiS, X denote non empty sets aRtlenotes a binary relation of.

We

introduce orthorelational structures which are extensions of relational structure and Com-

pIStr and are systems
( a carrier, an internal relation, a complement operatjon
where the carrier is a set, the internal relation is a binary relation on the carrier, and the complement

operati
Let

(Def. 1)

on is a unary operation on the carrier.
A, B be sets. The functdla g yielding a relation betweeA andB is defined by:

Opp = 0.

The functorQg(A) yielding a relation betweeaA andB is defined as follows:

(Def. 2) Qg(A) =[A B].
We now state a number of propositions:
(1) field(idx) = X.
(2) idy ={(0,0)}.
() op ={(0,0)}.
(4) LetL be a non empty reflexive antisymmetric relational structurexarycbe elements of

L. If x<y, then sugx,y} =yand infx,y} = x.
(5) For every binary relatioR holds donR C fieldR and rngR C fieldR.
(6) For all setsA, B holds field0ag) = 0.
(7) If Ris reflexive inX, thenRis reflexive and fiel&R = X.
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(8) If Ris symmetric inX, thenRis symmetric.
(9) If Ris symmetric and fiel® C S, thenRis symmetric inS.
(10) If Ris antisymmetric and fiel@ C S thenRis antisymmetric ir.
(11) If Ris antisymmetric irX, thenR is antisymmetric.
(12) If Ris transitive and fiel® C S, thenR s transitive inS.
(13) If Ris transitive inX, thenR s transitive.
(14) If Ris asymmetric and field C S thenRis asymmetric irs.
(15) If Ris asymmetric inX, thenR is asymmetric.
(16) If Ris irreflexive and fieldR C S, thenRis irreflexive inS.

(17) If Risirreflexive inX, thenRis irreflexive.

Let X be a set. Observe that there exists a binary relatiak which is irreflexive, asymmetric,
and transitive.
Let us conside, R and letC be a unary operation ad. One can verify thatX,R,C) is non
empty.
Let us observe that there exists a orthorelational structure which is non empty and strict.
Let us consideK and letf be a function fronX into X. We say thaff is dneg if and only if:
(Def. 3) For every elementof X holds f (f(x)) = x.

We introducef is involutive as a synonym df is dneg.
Next we state two propositions:

(19f] op, is dneg.
(20) idy is dneg.

Let O be a non empty orthorelational structure. One can check that there exists a map from
into O which is dneg.
The strict orthorelational structure TrivOrthoRelStr is defined by:

(Def. SEI TrivOrthoRelStr= ({0},id gy, 0p; ).

We introduce TrivPoset as a synonym of TrivOrthoRelStr.
Let us observe that TrivOrthoRelStr is non empty and trivial.
The strict orthorelational structure TrivAsymOrthoRelStr is defined by:

(Def. 6) TrivAsymOrthoRelSte= ({0}, 0, 0},0P1)-

One can verify that TrivAsymOrthoRelStr is non empty.
Let O be a non empty orthorelational structure. We say @i Dneg if and only if:

(Def. 7) There exists a mapfrom O into O such thatf = the complement operation @fandf is
dneg.

One can prove the following proposition
(21) TrivOrthoRelStr is Dneg.

Let us mention that TrivOrthoRelStr is Dneg.
Let us observe that there exists a non empty orthorelational structure which is Dneg.
Let O be a non empty relational structure. We say thas SubReFlexive if and only if:

1 The proposition (18) has been removed.
2 The definition (Def. 4) has been removed.



BASIC NOTIONS AND PROPERTIES OF ORTHOPOSETS 3

(Def. 1qﬂ The internal relation 00 is reflexive.

In the sequeD denotes a non empty relational structure.
Next we state two propositions:

(22) If Ois reflexive, therO is SubReFlexive.
(23) TrivOrthoRelStr is reflexive.

Let us note that TrivOrthoRelStr is reflexive.

Let us mention that there exists a nhon empty orthorelational structure which is reflexive and
strict.

Let us conside®. We say thaD is SublrreFlexive if and only if:

(Def. 12f] The internal relation 0© is irreflexive.
Let us observe thdD is irreflexive if and only if:
(Def. 13) The internal relation @D is irreflexive in the carrier 0D.
We now state two propositions:
(24) If Oisirreflexive, therO is SublrreFlexive.
(25) TrivAsymOrthoRelStr is irreflexive.

Let us observe that every non empty orthorelational structure which is irreflexive is also Sublr-
reFlexive.

Let us mention that TrivAsymOrthoRelStr is irreflexive.

One can check that there exists a non empty orthorelational structure which is irreflexive and
strict.

Let O be a non empty relational structure. We say thas SubSymmetric if and only if:

(Def. 14) The internal relation @ is a symmetric binary relation on the carrier@f
Next we state two propositions:
(26) If Ois symmetric, thel® is SubSymmetric.
(27) TrivOrthoRelStr is symmetric.

One can verify that every non empty orthorelational structure which is symmetric is also Sub-
Symmetric.

Let us observe that there exists a non empty orthorelational structure which is symmetric and
strict.

Let us conside®. We say thaD is SubAntisymmetric if and only if:

(Def. 16{ﬂ The internal relation o is an antisymmetric binary relation on the carriex®f
We now state two propositions:
(28) If Ois antisymmetric, the® is SubAntisymmetric.
(29) TrivOrthoRelStr is antisymmetric.

Let us mention that every non empty orthorelational structure which is antisymmetric is also
SubAntisymmetric.

Let us observe that TrivOrthoRelStr is symmetric.

Let us note that there exists a non empty orthorelational structure which is symmetric, antisym-
metric, and strict.

Let us conside®. We say thaD is Asymmetric if and only if:

3 The definitions (Def. 8) and (Def. 9) have been removed.
4 The definition (Def. 11) has been removed.
5 The definition (Def. 15) has been removed.
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(Def. lqﬂ The internal relation oD is asymmetric in the carrier @.

One can prove the following two propositions:

(30) If Ois Asymmetric, ther© is asymmetric.
(31) TrivAsymOrthoRelStr is Asymmetric.

Let us observe that every non empty orthorelational structure which is Asymmetric is also asym-
metric.

Let us mention that TrivAsymOrthoRelStr is Asymmetric.

Let us note that there exists a non empty orthorelational structure which is Asymmetric and
strict.

Let us consideD. We say thaD is SubTransitive if and only if:

(Def. 20) The internal relation dD is a transitive binary relation on the carrier@f

Next we state two propositions:

(32) If Ois transitive, therD is SubTransitive.
(33) TrivOrthoRelStr is transitive.

Let us note that every non empty orthorelational structure which is transitive is also SubTransi-
tive.

Let us observe that there exists a non empty orthorelational structure which is reflexive, sym-
metric, antisymmetric, transitive, and strict.

One can prove the following proposition

(34) TrivAsymOrthoRelStr is transitive.

One can check that TrivAsymOrthoRelStr is irreflexive, Asymmetric, and transitive.

One can verify that there exists a non empty orthorelational structure which is irreflexive, Asym-
metric, transitive, and strict.

The following four propositions are true:

(35) If Ois SubSymmetric and SubTransitive, thers SubReFlexive.
(36) If Ois SublrreFlexive and SubTransitive, th@rs asymmetric.
(37) If Ois asymmetric, the@® is SublrreFlexive.

(38) If Ois reflexive and SubSymmetric, th€nis symmetric.

One can check that every non empty orthorelational structure which is reflexive and SubSym-
metric is also symmetric.
The following proposition is true

(39) If Ois reflexive and SubAntisymmetric, thé€his antisymmetric.

Let us observe that every non empty orthorelational structure which is reflexive and SubAn-
tisymmetric is also antisymmetric.
The following proposition is true

(40) If Ois reflexive and SubTransitive, théhis transitive.

One can verify that every non empty orthorelational structure which is reflexive and SubTransi-
tive is also transitive.
Next we state the proposition

6 The definitions (Def. 17) and (Def. 18) have been removed.
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(41) If Oisirreflexive and SubTransitive, théhis transitive.

Let us mention that every non empty orthorelational structure which is irreflexive and SubTran-
sitive is also transitive.
One can prove the following proposition

(42) If Oisirreflexive and asymmetric, théhis Asymmetric.

Let us note that every non empty orthorelational structure which is irreflexive and asymmetric
is also Asymmetric.

2. BASIC POSETNOTIONS

Let us consideD. We say thaO is SubQuasiOrdered if and only if:
(Def. 22| Ois SubReFlexive and SubTransitive.

We introduceO is SubQuasiordered) is SubPreOrdered) is SubPreordered, ar@d is Subpre-
ordered as synonyms @f is SubQuasiOrdered.
Let us conside®. We say thaD is QuasiOrdered if and only if:

(Def. 23) Ois reflexive and transitive.

We introduceO is Quasiordered) is PreOrdered, an@ is Preordered as synonyms©fis Qua-
siOrdered.
One can prove the following proposition

(43) If Ois QuasiOrdered, the@ is SubQuasiOrdered.

One can check that every non empty orthorelational structure which is QuasiOrdered is also
SubQuasiOrdered.

Let us observe that TrivOrthoRelStr is QuasiOrdered.

In the sequeD is a non empty orthorelational structure.

Let us conside®. We say thaD is QuasiPure if and only if:

(Def. 24) Ois Dneg and QuasiOrdered.

Let us mention that there exists a non empty orthorelational structure which is QuasiPure, Dneg,
QuasiOrdered, and strict.

One can verify that TrivOrthoRelStr is QuasiPure.

A QuasiPureOrthoRelStr is a QuasiPure non empty orthorelational structure.

Let us conside®. We say thaD is SubPartialOrdered if and only if:

(Def. 25) Oiis reflexive, SubAntisymmetric, and SubTransitive.

We introduceO is SubPartialordered as a synonymis SubPartialOrdered.
Let us consideD. We say thaO is PartialOrdered if and only if:

(Def. 26) Oiis reflexive, antisymmetric, and transitive.

We introduceO is Partialordered as a synonym@fis PartialOrdered.
The following proposition is true

(44) Ois SubPartialOrdered ifd is PartialOrdered.

One can check that every non empty orthorelational structure which is SubPartialOrdered is
also PartialOrdered and every non empty orthorelational structure which is PartialOrdered is also
SubPartialOrdered.

Let us note that every non empty orthorelational structure which is PartialOrdered is also reflex-
ive, antisymmetric, and transitive and every non empty orthorelational structure which is reflexive,
antisymmetric, and transitive is also PartialOrdered.

Let us consideD. We say thaO is Pure if and only if:

7 The definition (Def. 21) has been removed.



BASIC NOTIONS AND PROPERTIES OF ORTHOPOSETS 6

(Def. 27) Oiis Dneg and PartialOrdered.

Let us note that there exists a non empty orthorelational structure which is Pure, Dneg, Par-
tialOrdered, and strict.

Let us mention that TrivOrthoRelStr is Pure.

A PureOrthoRelStr is a Pure non empty orthorelational structure.

Let us conside®. We say thaD is SubStrictPartialOrdered if and only if:

(Def. 28) O is asymmetric and SubTransitive.

Let us consideD. We say thaD is StrictPartialOrdered if and only if:

(Def. 29) Ois Asymmetric and transitive.

We introduceO is Strictpartialordered) is StrictOrdered, an@® is Strictordered as synonyms Of
is StrictPartialOrdered.
The following proposition is true

(45) If Ois StrictPartialOrdered, the is SubStrictPartialOrdered.

Let us observe that every non empty orthorelational structure which is StrictPartialOrdered is
also SubsStrictPartialOrdered.
Next we state the proposition

(46) If Ois SubStrictPartialOrdered, théhis SublrreFlexive.

Let us observe that every non empty orthorelational structure which is SubStrictPartialOrdered
is also SublrreFlexive.
We now state the proposition

(47) If Oisirreflexive and SubStrictPartialOrdered, th@is StrictPartialOrdered.

One can verify that every non empty orthorelational structure which is irreflexive and SubStrict-
PartialOrdered is also StrictPartialOrdered.
We now state the proposition

(48) If Ois StrictPartialOrdered, the@ is irreflexive.

Let us mention that every non empty orthorelational structure which is StrictPartialOrdered is
also irreflexive.

Let us observe that TrivAsymOrthoRelStr is irreflexive and StrictPartialOrdered.

One can check that there exists a non empty strict orthorelational structure which is irreflexive
and StrictPartialOrdered.

In the sequel, is a PartialOrdered non empty orthorelational structure@urid a QuasiOrdered
non empty orthorelational structure.

The following two propositions are true:

(49) If Q1 is SubAntisymmetric, the@; is PartialOrdered.
(50) Pyis aposet.

Let us observe that every non empty orthorelational structure which is PartialOrdered is also
reflexive, transitive, and antisymmetric.

Let P, be a PartialOrdered non empty orthorelational structure anfddeta unary operation on
the carrier ofP;. We say thatff is Orderinvolutive if and only if:

(Def. 3q'f| f is a dneg map fron®; into P, and an antitone map frof into P;.

Let us consideP;. We say thaP; is OrderInvolutive if and only if;

8 The definitions (Def. 30)—(Def. 32) have been removed.
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(Def. 34) There exists a mapfrom Py into P; such thatf = the complement operation & and f
is Orderinvolutive.

We now state the proposition
(51) The complement operation of TrivOrthoRelStr is Orderinvolutive.

Let us note that TrivOrthoRelStr is OrderInvolutive.

Let us observe that there exists a PartialOrdered non empty orthorelational structure which is
Orderlnvolutive and Pure.

A PreOrthoPoset is an Orderlnvolutive Pure PartialOrdered non empty orthorelational structure.

Let us consideP; and letf be a unary operation on the carrier®f We say thatf is Qua-
siOrthoComplement oR if and only if;

(Def. 35) f is Orderinvolutive and for every elemeybf P; holds sup{y, f(y)} exists inP; and inf
{y, f(y)} exists inP.

Let us consideP;. We say thaP; is QuasiOrthocomplemented if and only if:

(Def. 36) There exists a majpfrom Py into P; such thatf = the complement operation & and f
is QuasiOrthoComplement d®.

The following proposition is true
(52) TrivOrthoRelStr is QuasiOrthocomplemented.

Let us consideP; and letf be a unary operation on the carrier®f We say thatf is Ortho-
Complement orfP; if and only if the conditions (Def. 37) are satisfied.

(Def. 37)()) f is Orderinvolutive, and

(i) for every elemeny of Py holds sup{y, f(y)} exists inP; and inf{y, f(y)} exists inP; and
Lp, {y, f(y)} is @ maximum of the carrier &% and[ Ip,{y, f (y)} is @ minimum of the carrier
of P;.

We introducef is OCompl onP; as a synonym of is OrthoComplement oRy.
Let us consideP;. We say thaP; is Orthocomplemented if and only if:

(Def. 38) There exists a majpfrom P into P; such thatf = the complement operation & and f
is OrthoComplement oBR;.

We introduceP; is Ocompl as a synonym &% is Orthocomplemented.
The following propositions are true:

(53) Letf be a unary operation on the carrierff If f is OrthoComplement oRy, thenf is
QuasiOrthoComplement dh.

(54) TrivOrthoRelStr is Orthocomplemented.

Let us note that TrivOrthoRelStr is QuasiOrthocomplemented and Orthocomplemented.

Let us observe that there exists a PartialOrdered non empty orthorelational structure which is
Orthocomplemented and QuasiOrthocomplemented.

A QuasiOrthoPoset is a QuasiOrthocomplemented PartialOrdered non empty orthorelational
structure. An orthoposet is an Orthocomplemented PartialOrdered non empty orthorelational struc-
ture.
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