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the notation and terminology for this paper.

Let us observe that every lower bound lattice which is Heyting is also implicative and every
lattice which is implicative is also upper-bounded.

In the sequeT is a topological space arfg B are subsets oF.

We now state two propositions:

(1) AnInt(A°UB) C B.
(2) For every subsé of T such thaC is open andANC C B holdsC C Int(A°UB).

Let T be a topological structure. The functor Topol¢gy yields a family of subsets of and
is defined as follows:

(Def. 1) TopologyT) = the topology ofT.

Let us considel . Note that Topolog§T ) is non empty.
One can prove the following proposition

(3) Forevery subsetof T holdsAis open iff A € Topology(T).

Let T be a non empty topological space andReQ be elements of Topolod¥ ). ThenPUQ
is an element of Topolody ). ThenPNQ is an element of Topolod ).

In the sequeT denotes a non empty topological space Bn@ denote elements of Topology).

Let us consideff. The functor TopUniofil) yielding a binary operation on Topolog) is
defined as follows:

(Def. 2) (TopUnion(T))(P,Q) =PUQ.
The functor TopMeé€f) yielding a binary operation on Topolo@l) is defined by:
(Def. 3) (TopMeetT))(P,. Q) =PNQ.
One can prove the following proposition

(4) Forevery non empty topological spatéolds(Topology(T ), TopUnion(T), TopMee(T))
is a lattice.

Let us considell. The functor OpenSetL4®) yielding a lattice is defined by:
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(Def. 4) OpenSetlLatl ) = (Topology(T), TopUnionT), TopMeetT)).
The following proposition is true
(5) The carrier of OpenSetL&®) = Topology(T).

In the sequep, g denote elements of OpenSetl(at}.
We now state several propositions:

(6) pug=puUgandprig=pna
(7) pCqiff pcq.
(8) For all elementg’, g of Topology(T) such thapp = p’ andq=¢q holdspC qiff p’ C .
(9) OpenSetLatt) is implicative.
(10) OpenSetLatl) is lower-bounded and ppensettatr) = 0-

Let us considel . Observe that OpenSetL@k) is Heyting.
The following proposition is true

(11) TopensetLatr) = the carrier ofT.

For simplicity, we adopt the following conventioh:is a distributive latticef is a filter ofL, a,
b are elements df, andx, X1, Y, Z are sets.
Let us considet.. The functor PrimeFiltefd.) yields a set and is defined as follows:

(Def. 5) PrimeFilteréL) = {F : F # the carrier oL A Fis prime}.
We now state the proposition
(12) F € PrimekFiltergL) iff F # the carrier ofL andF is prime.

Let us considet. The functor StoneL) yields a function and is defined by:

(Def. 6) domStonekl) = the carrier ofL and(StoneHL))(a) = {F : F € PrimeFilter§L) A a€
F}.

Next we state two propositions:
(13) F € (StoneHL))(a) iff F € PrimeFiltergL) anda € F.

(14) x e (StoneHL))(a) iff there existsF such that- = x andF # the carrier ofL andF is
prime anda € F.

Let us consideL. The functor Stone@) yielding a set is defined as follows:
(Def. 7) Stone@) = rngStoneHL).

Let us considet.. Note that Stone@ ) is non empty.
One can prove the following three propositions:

(15) x e Stone3L) iff there existsa such tha = (StoneHL))(a).
(16) (StoneHL))(aLb) = (StoneHL))(a) U (StoneHL))(b).
(17) (StoneHL))(amnb) = (StoneHL))(a) N (StoneHL))(b).

Let us considet, a. The functor Filter&) yields a family of subsets df and is defined as
follows:

(Def. 8) Filterda) ={F :acF}.
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Let us considet and let us considea. Observe that Filtefs) is non empty.
The following propositions are true:

(18) xe€ Filter(a) iff xis a filter ofL anda € x.
(19) If x € Filterg(b) \ Filters(a), thenx s a filter ofL andb € x anda ¢ x.

(20) Let givenZ. Suppose& # 0 andZ C Filtergb) \ Filters(a) andZ is C-linear. Then there
existsY such thatt € Filters(b) \ Filters(a) and for everyX; such thaiX; € Z holdsX; C Y.

(21) IfbZ a, thenlb) € Filters(b) \ Filters(a).

(22) If bZ a, then there existB such thaF € PrimeFiltergL) anda ¢ F andb € F.
(23) Ifa#b, then there exist such thaF € PrimeFiltersgL).

(24) Ifa#Db, then(StoneHL))(a) # (StoneHL))(b).

(25) StoneHL) is one-to-one.

Let us considek and letA, B be elements of Ston¢lS). ThenAUB is an element of Stongb).
ThenANB is an element of Stongb).
Let us considek. The functor SetUniofL) yielding a binary operation on Ston@S is defined

by:
(Def. 9) For all elements, B of Stone$L) holds(SetUnior{L))(A, B) = AUB.
The functor SetMe¢lL ) yielding a binary operation on Ston@S is defined as follows:
(Def. 10) For all elementa, B of Stone$L) holds(SetMee(L))(A, B) = ANB.
Next we state the proposition
(26) (Stone$L),SetUnior{L), SetMee(L)) is a lattice.
Let us considet. The functor StonelLatt) yielding a lattice is defined by:
(Def. 11) StoneLafL) = (Stone%L), SetUnior{L), SetMeefL)).

In the sequep, g are elements of StoneLdtt).
One can prove the following propositions:

(27) For evenyL holds the carrier of StonelLélt) = Stone3L).
(28) pug=pugandprig=pnaq.
(29) pCaqiff pcaq.

Let us considet. Then Stonell) is a homomorphism frorh to StoneLatfl ).
We now state three propositions:

(30) StoneHL) is isomorphism.
(31) StoneLatfl) is distributive.
(32) L and StonelLaft) are isomorphic.

Let us note that there exists a Heyting lattice which is non trivial.
In the sequeH is a non trivial Heyting lattice and’,  are elements dfi.
One can prove the following three propositions:

(33) (StoneHH))(Tw) = PrimeFiltergH).
(34) (StoneHH))(Ln)=0.
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(35) Stone$—|) C oPrimeFiltergH)

by:

Let us consideH. Observe that PrimeFiltefid ) is non empty.
Let us consideH. The functor HTopSpacel) yielding a strict topological structure is defined

(Def. 12) The carrier of HTopSpag¢) = PrimeFilter§H) and the topology of HTopSpa(e) =

{UA: Aranges over subsets of StorfeiS}.

Let us consideH. Note that HTopSpadel) is non empty and topological space-like.

We now state two propositions:

(36) The carrier of OpenSetLaHTopSpacéH)) = {UA : A ranges over subsets of

Stone$H)}.

(37) Stone®H) C the carrier of OpenSetLati TopSpacéH)).

Let us consideH. Then StonelH) is a homomorphism frorH to OpenSetLatHTopSpacéH)).

We now state several propositions:

(38) StoneHH) is monomorphism.

(39) (StoneHH))(p' = q) = (StoneHH))(p') = (StoneHH))(d).

(40) StoneHH) preserves implication.

(41) StoneHH) preserves top.

(42) StoneHH) preserves bottom.
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