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The articles [11], [7], [13], [1], [14], [5], [6], [4], [9], [10], [15], [16], [12], [2], [3], and [8] provide
the notation and terminology for this paper.

Let us observe that every lower bound lattice which is Heyting is also implicative and every
lattice which is implicative is also upper-bounded.

In the sequelT is a topological space andA, B are subsets ofT.
We now state two propositions:

(1) A∩ Int(Ac∪B)⊆ B.

(2) For every subsetC of T such thatC is open andA∩C⊆ B holdsC⊆ Int(Ac∪B).

Let T be a topological structure. The functor Topology(T) yields a family of subsets ofT and
is defined as follows:

(Def. 1) Topology(T) = the topology ofT.

Let us considerT. Note that Topology(T) is non empty.
One can prove the following proposition

(3) For every subsetA of T holdsA is open iffA∈ Topology(T).

Let T be a non empty topological space and letP, Q be elements of Topology(T). ThenP∪Q
is an element of Topology(T). ThenP∩Q is an element of Topology(T).

In the sequelT denotes a non empty topological space andP, Qdenote elements of Topology(T).
Let us considerT. The functor TopUnion(T) yielding a binary operation on Topology(T) is

defined as follows:

(Def. 2) (TopUnion(T))(P, Q) = P∪Q.

The functor TopMeet(T) yielding a binary operation on Topology(T) is defined by:

(Def. 3) (TopMeet(T))(P, Q) = P∩Q.

One can prove the following proposition

(4) For every non empty topological spaceT holds〈Topology(T),TopUnion(T),TopMeet(T)〉
is a lattice.

Let us considerT. The functor OpenSetLatt(T) yielding a lattice is defined by:
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(Def. 4) OpenSetLatt(T) = 〈Topology(T),TopUnion(T),TopMeet(T)〉.

The following proposition is true

(5) The carrier of OpenSetLatt(T) = Topology(T).

In the sequelp, q denote elements of OpenSetLatt(T).
We now state several propositions:

(6) ptq = p∪q andpuq = p∩q.

(7) pv q iff p⊆ q.

(8) For all elementsp′, q′ of Topology(T) such thatp = p′ andq = q′ holdspv q iff p′ ⊆ q′.

(9) OpenSetLatt(T) is implicative.

(10) OpenSetLatt(T) is lower-bounded and⊥OpenSetLatt(T) = /0.

Let us considerT. Observe that OpenSetLatt(T) is Heyting.
The following proposition is true

(11) >OpenSetLatt(T) = the carrier ofT.

For simplicity, we adopt the following convention:L is a distributive lattice,F is a filter ofL, a,
b are elements ofL, andx, X1, Y, Z are sets.

Let us considerL. The functor PrimeFilters(L) yields a set and is defined as follows:

(Def. 5) PrimeFilters(L) = {F : F 6= the carrier ofL ∧ F is prime}.

We now state the proposition

(12) F ∈ PrimeFilters(L) iff F 6= the carrier ofL andF is prime.

Let us considerL. The functor StoneH(L) yields a function and is defined by:

(Def. 6) domStoneH(L) = the carrier ofL and(StoneH(L))(a) = {F : F ∈ PrimeFilters(L) ∧ a∈
F}.

Next we state two propositions:

(13) F ∈ (StoneH(L))(a) iff F ∈ PrimeFilters(L) anda∈ F.

(14) x ∈ (StoneH(L))(a) iff there existsF such thatF = x andF 6= the carrier ofL andF is
prime anda∈ F.

Let us considerL. The functor StoneS(L) yielding a set is defined as follows:

(Def. 7) StoneS(L) = rngStoneH(L).

Let us considerL. Note that StoneS(L) is non empty.
One can prove the following three propositions:

(15) x∈ StoneS(L) iff there existsa such thatx = (StoneH(L))(a).

(16) (StoneH(L))(atb) = (StoneH(L))(a)∪ (StoneH(L))(b).

(17) (StoneH(L))(aub) = (StoneH(L))(a)∩ (StoneH(L))(b).

Let us considerL, a. The functor Filters(a) yields a family of subsets ofL and is defined as
follows:

(Def. 8) Filters(a) = {F : a∈ F}.



REPRESENTATION THEOREM FOR HEYTING LATTICES 3

Let us considerL and let us considera. Observe that Filters(a) is non empty.
The following propositions are true:

(18) x∈ Filters(a) iff x is a filter ofL anda∈ x.

(19) If x∈ Filters(b)\Filters(a), thenx is a filter ofL andb∈ x anda /∈ x.

(20) Let givenZ. SupposeZ 6= /0 andZ ⊆ Filters(b) \Filters(a) andZ is ⊆-linear. Then there
existsY such thatY ∈ Filters(b)\Filters(a) and for everyX1 such thatX1 ∈ Z holdsX1 ⊆Y.

(21) If b 6v a, then[b) ∈ Filters(b)\Filters(a).

(22) If b 6v a, then there existsF such thatF ∈ PrimeFilters(L) anda /∈ F andb∈ F.

(23) If a 6= b, then there existsF such thatF ∈ PrimeFilters(L).

(24) If a 6= b, then(StoneH(L))(a) 6= (StoneH(L))(b).

(25) StoneH(L) is one-to-one.

Let us considerL and letA, B be elements of StoneS(L). ThenA∪B is an element of StoneS(L).
ThenA∩B is an element of StoneS(L).

Let us considerL. The functor SetUnion(L) yielding a binary operation on StoneS(L) is defined
by:

(Def. 9) For all elementsA, B of StoneS(L) holds(SetUnion(L))(A, B) = A∪B.

The functor SetMeet(L) yielding a binary operation on StoneS(L) is defined as follows:

(Def. 10) For all elementsA, B of StoneS(L) holds(SetMeet(L))(A, B) = A∩B.

Next we state the proposition

(26) 〈StoneS(L),SetUnion(L),SetMeet(L)〉 is a lattice.

Let us considerL. The functor StoneLatt(L) yielding a lattice is defined by:

(Def. 11) StoneLatt(L) = 〈StoneS(L),SetUnion(L),SetMeet(L)〉.

In the sequelp, q are elements of StoneLatt(L).
One can prove the following propositions:

(27) For everyL holds the carrier of StoneLatt(L) = StoneS(L).

(28) ptq = p∪q andpuq = p∩q.

(29) pv q iff p⊆ q.

Let us considerL. Then StoneH(L) is a homomorphism fromL to StoneLatt(L).
We now state three propositions:

(30) StoneH(L) is isomorphism.

(31) StoneLatt(L) is distributive.

(32) L and StoneLatt(L) are isomorphic.

Let us note that there exists a Heyting lattice which is non trivial.
In the sequelH is a non trivial Heyting lattice andp′, q′ are elements ofH.
One can prove the following three propositions:

(33) (StoneH(H))(>H) = PrimeFilters(H).

(34) (StoneH(H))(⊥H) = /0.
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(35) StoneS(H)⊆ 2PrimeFilters(H).

Let us considerH. Observe that PrimeFilters(H) is non empty.
Let us considerH. The functor HTopSpace(H) yielding a strict topological structure is defined

by:

(Def. 12) The carrier of HTopSpace(H) = PrimeFilters(H) and the topology of HTopSpace(H) =
{
⋃

A : A ranges over subsets of StoneS(H)}.

Let us considerH. Note that HTopSpace(H) is non empty and topological space-like.
We now state two propositions:

(36) The carrier of OpenSetLatt(HTopSpace(H)) = {
⋃

A : A ranges over subsets of
StoneS(H)}.

(37) StoneS(H)⊆ the carrier of OpenSetLatt(HTopSpace(H)).

Let us considerH. Then StoneH(H) is a homomorphism fromH to OpenSetLatt(HTopSpace(H)).
We now state several propositions:

(38) StoneH(H) is monomorphism.

(39) (StoneH(H))(p′⇒ q′) = (StoneH(H))(p′)⇒ (StoneH(H))(q′).

(40) StoneH(H) preserves implication.

(41) StoneH(H) preserves top.

(42) StoneH(H) preserves bottom.
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