Factorial and Newton Coefficients

Rafał Kwiatek Nicolaus Copernicus University Toruń

Summary. We define the following functions: exponential function (for natural exponent), factorial function and Newton coefficients. We prove some basic properties of notions introduced. There is also a proof of binominal formula. We prove also that $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.

MML Identifier: NEWTON.

WWW: http://mizar.org/JFM/Vol2/newton.html

The articles [9], [2], [3], [10], [8], [5], [4], [6], [1], and [7] provide the notation and terminology for this paper.

For simplicity, we follow the rules: *i*, *k*, *n*, *m*, *l* denote natural numbers, *s*, *t*, *r* denote natural numbers, *a*, *b*, *x*, *y* denote real numbers, and *F*, *G* denote finite sequences of elements of \mathbb{R} .

The following propositions are true:

- (3)¹ For all finite sequences F, G such that $\operatorname{len} F = \operatorname{len} G$ and for every i such that $i \in \operatorname{dom} F$ holds F(i) = G(i) holds F = G.
- (5)² For every *n* such that $n \ge 1$ holds Seg $n = \{1\} \cup \{k : 1 < k \land k < n\} \cup \{n\}$.
- (6) For every *F* holds $len(a \cdot F) = len F$.
- (7) $n \in \operatorname{dom} G \operatorname{iff} n \in \operatorname{dom}(a \cdot G).$

Let *i* be a natural number and let *x* be a real number. Then $i \mapsto x$ is a finite sequence of elements of \mathbb{R} .

Let *x* be a real number and let *n* be a natural number. The functor x^n is defined by:

(Def. 1) $x^n = \prod (n \mapsto x).$

Let *x* be a real number and let *n* be a natural number. Observe that x^n is real. Let *x* be a real number and let *n* be a natural number. Then x^n is a real number. We now state several propositions:

- (9)³ For every *x* holds $x^0 = 1$.
- (10) For every *x* holds $x^1 = x$.
- (11) For every *s* holds $x^{s+1} = x^s \cdot x$.

 $(12) \quad (x \cdot y)^s = x^s \cdot y^s.$

¹ The propositions (1) and (2) have been removed.

 $^{^{2}}$ The proposition (4) has been removed.

³ The proposition (8) has been removed.

- (13) $x^{s+t} = x^s \cdot x^t$.
- $(14) \quad (x^s)^t = x^{s \cdot t}.$
- (15) For every *s* holds $1^s = 1$.
- (16) For every *s* such that $s \ge 1$ holds $0^s = 0$.

Let *n* be a natural number. Then idseq(n) is a finite sequence of elements of \mathbb{R} . Let *n* be a natural number. The functor *n*! is defined as follows:

(Def. 2) $n! = \prod idseq(n)$.

Let *n* be a natural number. Observe that n! is real. Let *n* be a natural number. Then n! is a real number. We now state several propositions:

- $(18)^4$ 0! = 1.
- (19) 1! = 1.
- (20) 2! = 2.
- (21) For every *s* holds $(s+1)! = s! \cdot (s+1)$.
- (22) For every *s* holds *s*! is a natural number.
- (23) For every *s* holds s! > 0.
- (25)⁵ For all s, t holds $s! \cdot t! \neq 0$.

Let *k*, *n* be natural numbers. The functor $\binom{n}{k}$ is defined by:

(Def. 3)(i) For every natural number *l* such that l = n - k holds $\binom{n}{k} = \frac{n!}{k! \cdot l!}$ if $n \ge k$,

(ii) $\binom{n}{k} = 0$, otherwise.

Let *k*, *n* be natural numbers. Observe that $\binom{n}{k}$ is real. Let *k*, *n* be natural numbers. Then $\binom{n}{k}$ is a real number. The following propositions are true:

- $(27)^6 \binom{0}{0} = 1.$
- (29)⁷ For every *s* holds $\binom{s}{0} = 1$.
- (30) For all s, t such that $s \ge t$ and for every r such that r = s t holds $\binom{s}{t} = \binom{s}{r}$.
- (31) For every *s* holds $\binom{s}{s} = 1$.
- (32) For all *s*, *t* such that s < t holds $\binom{t+1}{s+1} = \binom{t}{s+1} + \binom{t}{s}$ and $\binom{t+1}{s+1} = \binom{t}{s} + \binom{t}{s+1}$.
- (33) For every *s* such that $s \ge 1$ holds $\binom{s}{1} = s$.
- (34) For all s, t such that $s \ge 1$ and t = s 1 holds $\binom{s}{t} = s$.
- (35) For every *s* and for every *r* holds $\binom{s}{r}$ is a natural number.
- (36) For all *m*, *F* such that $m \neq 0$ and len F = m and for all *i*, *l* such that $i \in \text{dom } F$ and l = (n+i) 1 holds $F(i) = {l \choose n}$ holds $\sum F = {n+m \choose n+1}$.

⁴ The proposition (17) has been removed.

⁵ The proposition (24) has been removed.

⁶ The proposition (26) has been removed.

⁷ The proposition (28) has been removed.

Let *a*, *b* be real numbers and let *n* be a natural number. The functor $\langle \binom{n}{0}a^{0}b^{n}, \dots, \binom{n}{n}a^{n}b^{0} \rangle$ yielding a finite sequence of elements of \mathbb{R} is defined by the conditions (Def. 4).

(Def. 4)(i)
$$\operatorname{len}\langle {n \choose 0} a^0 b^n, \dots, {n \choose n} a^n b^0 \rangle = n+1$$
, and

(ii) for all natural numbers *i*, *l*, *m* such that $i \in \text{dom}\langle \binom{n}{0}a^0b^n, \dots, \binom{n}{n}a^nb^0 \rangle$ and m = i - 1 and l = n - m holds $\langle \binom{n}{0}a^0b^n, \dots, \binom{n}{n}a^nb^0 \rangle (i) = \binom{n}{m} \cdot a^l \cdot b^m$.

Next we state four propositions:

- $(38)^8 \quad \langle \begin{pmatrix} 0 \\ 0 \end{pmatrix} a^0 b^0, \dots, \begin{pmatrix} 0 \\ 0 \end{pmatrix} a^0 b^0 \rangle = \langle 1 \rangle.$
- (39) $\langle {\binom{s}{0}}a^0b^s, \dots, {\binom{s}{s}}a^sb^0\rangle(1) = a^s.$
- (40) $\langle {\binom{s}{0}}a^0b^s, \dots, {\binom{s}{s}}a^sb^0\rangle(s+1) = b^s.$
- (41) For every *s* holds $(a+b)^s = \sum \langle {s \choose 0} a^0 b^s, \dots, {s \choose s} a^s b^0 \rangle$.

Let *n* be a natural number. The functor $\langle \binom{n}{0}, \ldots, \binom{n}{n} \rangle$ yielding a finite sequence of elements of \mathbb{R} is defined by:

(Def. 5) $\ln\langle \binom{n}{0}, \ldots, \binom{n}{n} \rangle = n+1$ and for all natural numbers *i*, *k* such that $i \in \operatorname{dom} \langle \binom{n}{0}, \ldots, \binom{n}{n} \rangle$ and k = i-1 holds $\langle \binom{n}{0}, \ldots, \binom{n}{n} \rangle (i) = \binom{n}{k}$.

Next we state two propositions:

- (43)⁹ For every *s* holds $\langle \binom{s}{0}, \ldots, \binom{s}{s} \rangle = \langle \binom{s}{0} 1^0 1^s, \ldots, \binom{s}{s} 1^s 1^0 \rangle$.
- (44) For every *s* holds $2^s = \sum \langle {s \choose 0}, \dots, {s \choose s} \rangle$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ ordinal2.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [7] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_l.html.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.

⁸ The proposition (37) has been removed.

⁹ The proposition (42) has been removed.

[10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.

Received July 27, 1990

Published January 2, 2004