Factorial and Newton Coefficients

Rafał Kwiatek
Nicolaus Copernicus University
Toruń

Abstract

Summary. We define the following functions: exponential function (for natural exponent), factorial function and Newton coefficients. We prove some basic properties of notions introduced. There is also a proof of binominal formula. We prove also that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

MML Identifier: NEWTON.

WWW: http://mizar.org/JFM/Vol2/newton.html

The articles [9], [2], [3], [10], [8], [5], [4], [6], [1], and [7] provide the notation and terminology for this paper.

For simplicity, we follow the rules: i, k, n, m, l denote natural numbers, s, t, r denote natural numbers, a, b, x, y denote real numbers, and F, G denote finite sequences of elements of \mathbb{R}.

The following propositions are true:
(3 $)^{T}$ For all finite sequences F, G such that len $F=\operatorname{len} G$ and for every i such that $i \in \operatorname{dom} F$ holds $F(i)=G(i)$ holds $F=G$.
$(5)^{2}$ For every n such that $n \geq 1$ holds $\operatorname{Seg} n=\{1\} \cup\{k: 1<k \wedge k<n\} \cup\{n\}$.
(6) For every F holds len $(a \cdot F)=\operatorname{len} F$.
(7) $n \in \operatorname{dom} G$ iff $n \in \operatorname{dom}(a \cdot G)$.

Let i be a natural number and let x be a real number. Then $i \mapsto x$ is a finite sequence of elements of \mathbb{R}.

Let x be a real number and let n be a natural number. The functor x^{n} is defined by:
(Def. 1) $x^{n}=\Pi(n \mapsto x)$.
Let x be a real number and let n be a natural number. Observe that x^{n} is real.
Let x be a real number and let n be a natural number. Then x^{n} is a real number.
We now state several propositions:
$(9)^{3}$ For every x holds $x^{0}=1$.
(10) For every x holds $x^{1}=x$.
(11) For every s holds $x^{s+1}=x^{s} \cdot x$.
(12) $(x \cdot y)^{s}=x^{s} \cdot y^{s}$.

[^0](13) $x^{s+t}=x^{s} \cdot x^{t}$.
(14) $\left(x^{s}\right)^{t}=x^{s \cdot t}$.
(15) For every s holds $1^{s}=1$.
(16) For every s such that $s \geq 1$ holds $0^{s}=0$.

Let n be a natural number. Then $\operatorname{idseq}(n)$ is a finite sequence of elements of \mathbb{R}.
Let n be a natural number. The functor n ! is defined as follows:
(Def. 2) $n!=\Pi \operatorname{idseq}(n)$.
Let n be a natural number. Observe that $n!$ is real.
Let n be a natural number. Then n ! is a real number.
We now state several propositions:
$(18)^{4} \quad 0!=1$.
(19) $1!=1$.
(20) $2!=2$.
(21) For every s holds $(s+1)!=s!\cdot(s+1)$.
(22) For every s holds s ! is a natural number.
(23) For every s holds $s!>0$.
(25) For all s, t holds $s!\cdot t!\neq 0$.

Let k, n be natural numbers. The functor $\binom{n}{k}$ is defined by:
(Def. 3)(i) For every natural number l such that $l=n-k$ holds $\binom{n}{k}=\frac{n!}{k!\cdot l!}$ if $n \geq k$,
(ii) $\binom{n}{k}=0$, otherwise.

Let k, n be natural numbers. Observe that $\binom{n}{k}$ is real.
Let k, n be natural numbers. Then $\binom{n}{k}$ is a real number.
The following propositions are true:
$(27)^{6} \quad\binom{0}{0}=1$.
(29 $]^{7}$ For every s holds $\binom{s}{0}=1$.
(30) For all s, t such that $s \geq t$ and for every r such that $r=s-t$ holds $\binom{s}{t}=\binom{s}{r}$.
(31) For every s holds $\binom{s}{s}=1$.
(32) For all s, t such that $s<t$ holds $\binom{t+1}{s+1}=\binom{t}{s+1}+\binom{t}{s}$ and $\binom{t+1}{s+1}=\binom{t}{s}+\binom{t}{s+1}$.
(33) For every s such that $s \geq 1$ holds $\binom{s}{1}=s$.
(34) For all s, t such that $s \geq 1$ and $t=s-1$ holds $\binom{s}{t}=s$.
(35) For every s and for every r holds $\binom{s}{r}$ is a natural number.
(36) For all m, F such that $m \neq 0$ and len $F=m$ and for all i, l such that $i \in \operatorname{dom} F$ and $l=$ $(n+i)-1$ holds $F(i)=\binom{l}{n}$ holds $\sum F=\binom{n+m}{n+1}$.

[^1]Let a, b be real numbers and let n be a natural number. The functor $\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle$ yielding a finite sequence of elements of \mathbb{R} is defined by the conditions (Def. 4).
(Def. 4)(i) $\quad \operatorname{len}\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle=n+1$, and
(ii) for all natural numbers i, l, m such that $i \in \operatorname{dom}\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle$ and $m=i-1$ and $l=n-m$ holds $\left\langle\binom{ n}{0} a^{0} b^{n}, \ldots,\binom{n}{n} a^{n} b^{0}\right\rangle(i)=\binom{n}{m} \cdot a^{l} \cdot b^{m}$.

Next we state four propositions:
$(38)^{8}\left\langle\binom{ 0}{0} a^{0} b^{0}, \ldots,\binom{0}{0} a^{0} b^{0}\right\rangle=\langle 1\rangle$.
(39) $\left\langle\binom{ s}{0} a^{0} b^{s}, \ldots,\binom{s}{s} a^{s} b^{0}\right\rangle(1)=a^{s}$.
(40) $\left\langle\binom{ s}{0} a^{0} b^{s}, \ldots,\binom{s}{s} a^{s} b^{0}\right\rangle(s+1)=b^{s}$.
(41) For every s holds $(a+b)^{s}=\Sigma\left\langle\binom{ s}{0} a^{0} b^{s}, \ldots,\binom{s}{s} a^{s} b^{0}\right\rangle$.

Let n be a natural number. The functor $\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle$ yielding a finite sequence of elements of \mathbb{R} is defined by:
(Def. 5) $\operatorname{len}\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle=n+1$ and for all natural numbers i, k such that $i \in \operatorname{dom}\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle$ and $k=i-1$ holds $\left\langle\binom{ n}{0}, \ldots,\binom{n}{n}\right\rangle(i)=\binom{n}{k}$.

Next we state two propositions:
(43 $)^{9}$ For every s holds $\left\langle\binom{ s}{0}, \ldots,\binom{s}{s}\right\rangle=\left\langle\binom{ s}{0} 1^{0} 1^{s}, \ldots,\binom{s}{s} 1^{s} 1^{0}\right\rangle$.
(44) For every s holds $2^{s}=\Sigma\left\langle\binom{ s}{0}, \ldots,\binom{s}{s}\right\rangle$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ ordinal2.html
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. funct_1.html
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html
[7] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/rvsum_1.html
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html

[^2][10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html

Received July 27, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (1) and (2) have been removed.
 ${ }^{2}$ The proposition (4) has been removed.
 ${ }^{3}$ The proposition (8) has been removed.

[^1]: ${ }_{5}^{4}$ The proposition (17) has been removed.
 ${ }^{5}$ The proposition (24) has been removed.
 ${ }^{6}$ The proposition (26) has been removed.
 ${ }^{7}$ The proposition (28) has been removed.

[^2]: ${ }^{8}$ The proposition (37) has been removed.
 ${ }^{9}$ The proposition (42) has been removed.

