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Summary. We define the following functions: exponential function (for natural expo-
nent), factorial function and Newton coefficients. We prove some basic properties of notions
introduced. There is also a proof of binominal formula. We prove alsosthag (i) = 2".

MML Identifier: NEWTON.
WWW: http://mizar.org/JFM/Vol2/newton.html

The articles([9],[[2],[3],[[10], 18], 5], [4], [6], [1], and([7] provide the notation and terminology for

this paper.
For simplicity, we follow the rulesi, k, n, m, | denote natural numbers,t, r denote natural
numbersa, b, X, y denote real numbers, afiid G denote finite sequences of element®Rof

The following propositions are true:

(SH For all finite sequenceB, G such that lefr = lenG and for everyi such that € domF
holdsF (i) = G(i) holdsF = G.

(SH For everyn such than > 1 holds Seg = {1} U{k: 1<k A k< n}U{n}.
(6) ForeveryF holds lerfa:- F) = lenF.
(7) nedomGiff ne doma-:G).

Leti be a natural number and bebe a real number. Theém— x is a finite sequence of elements

of R.
Let x be a real number and latbe a natural number. The functdtis defined by:

(Def. 1) x"=1](n— X).

Let x be a real number and latbe a natural number. Observe tiXais real.
Let x be a real number and latbe a natural number. Thefi is a real number.

We now state several propositions:

(9F] For everyx holdsx? = 1.
(10) For every holdsx! = x.
(11) Foreverysholdsx®tt = x3-x.

(12) (x-y) =2y

1 The propositions (1) and (2) have been removed.
2 The proposition (4) has been removed.
3 The proposition (8) has been removed.
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(13) xSt =x3.x.

(14) ()t =x5t

(15) Forevensholds £=1.

(16) For everyssuch thas > 1 holds 6 = 0.

Let n be a natural number. Then idgegis a finite sequence of elementsf
Let n be a natural number. The functaris defined as follows:

(Def. 2) nl =Tyidseqn).

Let n be a natural number. Observe thats real.
Let n be a natural number. Thetis a real number.
We now state several propositions:

@a8f] o'=1.
(19) 1'=1.
(20) 2!=2.

(21) Foreverysholds(s+1)! =¢-(s+1).
(22) For everysholdss! is a natural number.
(23) For evernsholdss! > 0.
(25F] Foralls, t holdss! -t! # 0.
Letk, nbe natural numbers. The funct@}) is defined by:
(Def. 3)(i)  For every natural numbésuch that = n—k holds (}) = (% if n> Kk,
(i) (§) =0, otherwise.

Letk, n be natural numbers. Observe tig} is real.
Letk, n be natural numbers. The#) is a real number.
The following propositions are true:

@7 @ =1
(29)] For everysholds(g) = 1.

(30) Foralls, t such thas >t and for everyr such that =s—t holds(3) = (7).

r

(31) Foreverysholds(3) = 1.

(32) Foralls, t such thas <t holds(577) = (s14) + () and (571) = () + (514)-

(33) For everyssuch thas> 1 holds($) =s.
(34) Foralls, t such thas> 1 andt =s—1 holds(}) =s.
(35) For everysand for every holds(}) is a natural number.

(36) For allm, F such thatm # 0 and lerF = m and for alli, | such that € domF andl =

(n+i) — 1 holdsF (i) = (}) holdsy F = (7"7).

4 The proposition (17) has been removed.
5 The proposition (24) has been removed.
6 The proposition (26) has been removed.
7 The proposition (28) has been removed.
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Let a, b be real numbers and letbe a natural number. The functofg)a’”,..., (7)a"e°)
yielding a finite sequence of elementsifs defined by the conditions (Def. 4).
(Def. 4)(i) len((5)a%",..., (7)a"v%) =n+1, and
(i) for all natural numbers, |, msuch thai € dom((g)a%",..., (})a"°) andm=i—1 and
| =n—mholds((§)a%",.... (7)a"m% (i) = (7)-a -b™.

Next we state four propositions:
(3] ((§)abP...... (()a%°) = (1).
(39) ((§)a%s,..., (Jah%(1) =as.
40) ((§adbs,..., (D)ahO)(s+ 1) = b,
(41) For everysholds(a+b)s =y ((5)a%s,..., (JahP).

Let n be a natural number. The funct¢{f),..., (7)) yielding a finite sequence of elements of
R is defined by:

(Def. 5) len(g),..., (n)) =n+1and for all natural numbeisk such that € dom{((g),..., (1)) and
k=i—1holds((g),, () (1) = ()-

Next we state two propositions:

(43 For everysholds((3),..-, () = ((§)1°15,..., (D 1°1°).
(44) Forevensholds Z2=75((3),...,(2)-
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