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Summary. Some fundamental notions of the theory of Petri nets are described in
Mizar formalism. A Petri net is defined as a triple of the form〈places, transitions, flow〉
with places and transitions being disjoint sets and flow being a relation included in places×
transitions.

MML Identifier: NET_1.

WWW: http://mizar.org/JFM/Vol2/net_1.html

The articles [2], [1], [3], and [4] provide the notation and terminology for this paper.
We introduce nets which are systems
〈 places, transitions, a flow relation〉,

where the places and the transitions constitute sets and the flow relation is a binary relation.
In the sequelx, y are sets andN is a net.
Let N be a net. We say thatN is Petri if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) The places ofN misses the transitions ofN, and

(ii) the flow relation ofN ⊆ [: the places ofN, the transitions ofN :]∪ [: the transitions ofN,
the places ofN :].

We introduceN is a Petri net as a synonym ofN is Petri.
Let N be a net. The functor Elements(N) is defined by:

(Def. 2) Elements(N) = (the places ofN)∪ (the transitions ofN).

We now state several propositions:

(4)1 The places ofN ⊆ Elements(N).

(5) The transitions ofN ⊆ Elements(N).

(6) x∈ Elements(N) iff x∈ the places ofN or x∈ the transitions ofN.

(7) Suppose Elements(N) 6= /0. Supposex is an element of Elements(N). Thenx is an element
of the places ofN and an element of the transitions ofN.

(8) If x is an element of the places ofN and the places ofN 6= /0, then x is an element of
Elements(N).

(9) If x is an element of the transitions ofN and the transitions ofN 6= /0, thenx is an element
of Elements(N).

1 The propositions (1)–(3) have been removed.
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Let us observe that〈 /0, /0, /0〉 is Petri.
Let us mention that there exists a net which is strict and Petri.
A Petri net is a Petri net.
The following propositions are true:

(11)2 For every Petri netN holdsx /∈ the places ofN or x /∈ the transitions ofN.

(12) LetN be a Petri net. Suppose〈〈x, y〉〉 ∈ the flow relation ofN andx∈ the transitions ofN.
Theny∈ the places ofN.

(13) LetN be a Petri net. Suppose〈〈x, y〉〉 ∈ the flow relation ofN andy∈ the transitions ofN.
Thenx∈ the places ofN.

(14) LetN be a Petri net. Suppose〈〈x, y〉〉 ∈ the flow relation ofN andx∈ the places ofN. Then
y∈ the transitions ofN.

(15) LetN be a Petri net. Suppose〈〈x, y〉〉 ∈ the flow relation ofN andy∈ the places ofN. Then
x∈ the transitions ofN.

Let N be a Petri net and let us considerx, y. We say thatx is a pre-element ofy in N if and only
if:

(Def. 5)3 〈〈y, x〉〉 ∈ the flow relation ofN andx∈ the transitions ofN.

We say thatx is a post-element ofy in N if and only if:

(Def. 6) 〈〈x, y〉〉 ∈ the flow relation ofN andx∈ the transitions ofN.

Let N be a net and letx be an element of Elements(N). The functor Pre(N,x) is defined as
follows:

(Def. 7) y∈ Pre(N,x) iff y∈ Elements(N) and〈〈y, x〉〉 ∈ the flow relation ofN.

The functor Post(N,x) is defined by:

(Def. 8) y∈ Post(N,x) iff y∈ Elements(N) and〈〈x, y〉〉 ∈ the flow relation ofN.

Next we state several propositions:

(16) For every Petri netN and for every elementx of Elements(N) holds Pre(N,x) ⊆
Elements(N).

(17) For every Petri netN and for every elementx of Elements(N) holds Pre(N,x) ⊆
Elements(N).

(18) For every Petri netN and for every elementx of Elements(N) holds Post(N,x) ⊆
Elements(N).

(19) For every Petri netN and for every elementx of Elements(N) holds Post(N,x) ⊆
Elements(N).

(20) LetN be a Petri net andy be an element of Elements(N). Supposey∈ the transitions ofN.
Thenx∈ Pre(N,y) if and only if y is a pre-element ofx in N.

(21) LetN be a Petri net andy be an element of Elements(N). Supposey∈ the transitions ofN.
Thenx∈ Post(N,y) if and only if y is a post-element ofx in N.

Let N be a Petri net and letx be an element of Elements(N). Let us assume that Elements(N) 6=
/0. The functor enter(N,x) is defined by:

2 The proposition (10) has been removed.
3 The definitions (Def. 3) and (Def. 4) have been removed.
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(Def. 9) If x ∈ the places ofN, then enter(N,x) = {x} and if x ∈ the transitions ofN, then
enter(N,x) = Pre(N,x).

One can prove the following three propositions:

(22) For every Petri netN and for every elementx of Elements(N) such that Elements(N) 6= /0
holds enter(N,x) = {x} or enter(N,x) = Pre(N,x).

(23) For every Petri netN and for every elementx of Elements(N) such that Elements(N) 6= /0
holds enter(N,x)⊆ Elements(N).

(24) For every Petri netN and for every elementx of Elements(N) such that Elements(N) 6= /0
holds enter(N,x)⊆ Elements(N).

Let N be a Petri net and letx be an element of Elements(N). Let us assume that Elements(N) 6=
/0. The functor exit(N,x) yields a set and is defined by:

(Def. 10) Ifx∈ the places ofN, then exit(N,x) = {x} and ifx∈ the transitions ofN, then exit(N,x) =
Post(N,x).

We now state three propositions:

(25) For every Petri netN and for every elementx of Elements(N) such that Elements(N) 6= /0
holds exit(N,x) = {x} or exit(N,x) = Post(N,x).

(26) For every Petri netN and for every elementx of Elements(N) such that Elements(N) 6= /0
holds exit(N,x)⊆ Elements(N).

(27) For every Petri netN and for every elementx of Elements(N) such that Elements(N) 6= /0
holds exit(N,x)⊆ Elements(N).

Let N be a Petri net and letx be an element of Elements(N). The functor field(N,x) is defined
as follows:

(Def. 11) field(N,x) = enter(N,x)∪exit(N,x).

Let N be a net and letx be an element of the transitions ofN. The functor Prec(N,x) is defined
by:

(Def. 12) y∈ Prec(N,x) iff y∈ the places ofN and〈〈y, x〉〉 ∈ the flow relation ofN.

The functor Postc(N,x) is defined by:

(Def. 13) y∈ Postc(N,x) iff y∈ the places ofN and〈〈x, y〉〉 ∈ the flow relation ofN.

Let N be a Petri net and letX be a set. The functor Entr(N,X) is defined by:

(Def. 14) x∈ Entr(N,X) iff x⊆ Elements(N) and there exists an elementy of Elements(N) such that
y∈ X andx = enter(N,y).

The functor Ext(N,X) is defined as follows:

(Def. 15) x∈ Ext(N,X) iff x⊆ Elements(N) and there exists an elementy of Elements(N) such that
y∈ X andx = exit(N,y).

The following propositions are true:

(28) LetN be a Petri net,x be an element of Elements(N), andX be a set. If Elements(N) 6= /0
andX ⊆ Elements(N) andx∈ X, then enter(N,x) ∈ Entr(N,X).

(29) LetN be a Petri net,x be an element of Elements(N), andX be a set. If Elements(N) 6= /0
andX ⊆ Elements(N) andx∈ X, then exit(N,x) ∈ Ext(N,X).

Let N be a Petri net and letX be a set. The functor Input(N,X) is defined as follows:



SOME ELEMENTARY NOTIONS OF THE THEORY OF. . . 4

(Def. 16) Input(N,X) =
⋃

Entr(N,X).

The functor Output(N,X) is defined by:

(Def. 17) Output(N,X) =
⋃

Ext(N,X).

We now state four propositions:

(30) Let N be a Petri net, givenx, and X be a set. Suppose Elements(N) 6= /0 and X ⊆
Elements(N). Thenx∈ Input(N,X) if and only if there exists an elementy of Elements(N)
such thaty∈ X andx∈ enter(N,y).

(31) Let N be a Petri net, givenx, and X be a set. Suppose Elements(N) 6= /0 and X ⊆
Elements(N). Thenx∈Output(N,X) if and only if there exists an elementy of Elements(N)
such thaty∈ X andx∈ exit(N,y).

(32) LetN be a Petri net,X be a subset of Elements(N), andx be an element of Elements(N).
Suppose Elements(N) 6= /0. Thenx∈ Input(N,X) if and only if one of the following conditions
is satisfied:

(i) x∈ X andx∈ the places ofN, or

(ii) there exists an elementy of Elements(N) such thaty∈ X andy∈ the transitions ofN and
y is a pre-element ofx in N.

(33) LetN be a Petri net,X be a subset of Elements(N), andx be an element of Elements(N).
Suppose Elements(N) 6= /0. Thenx∈Output(N,X) if and only if one of the following condi-
tions is satisfied:

(i) x∈ X andx∈ the places ofN, or

(ii) there exists an elementy of Elements(N) such thaty∈ X andy∈ the transitions ofN and
y is a post-element ofx in N.
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