Some Elementary Notions of the Theory of Petri Nets

Waldemar Korczyński Warsaw University Białystok

Summary. Some fundamental notions of the theory of Petri nets are described in Mizar formalism. A Petri net is defined as a triple of the form $\langle \text{places}, \text{transitions}, \text{flow} \rangle$ with places and transitions being disjoint sets and flow being a relation included in places \times transitions.

MML Identifier: NET 1.

WWW: http://mizar.org/JFM/Vol2/net_1.html

The articles [2], [1], [3], and [4] provide the notation and terminology for this paper.

We introduce nets which are systems

⟨ places, transitions, a flow relation ⟩,

where the places and the transitions constitute sets and the flow relation is a binary relation.

In the sequel x, y are sets and N is a net.

Let N be a net. We say that N is Petri if and only if the conditions (Def. 1) are satisfied.

- (Def. 1)(i) The places of N misses the transitions of N, and
 - (ii) the flow relation of $N \subseteq [$: the places of N, the transitions of N: $] \cup [$: the transitions of N, the places of N:].

We introduce N is a Petri net as a synonym of N is Petri.

Let N be a net. The functor Elements(N) is defined by:

(Def. 2) Elements(N) = (the places of N) \cup (the transitions of N).

We now state several propositions:

- (4)¹ The places of $N \subseteq \text{Elements}(N)$.
- (5) The transitions of $N \subseteq \text{Elements}(N)$.
- (6) $x \in \text{Elements}(N)$ iff $x \in \text{the places of } N \text{ or } x \in \text{the transitions of } N$.
- (7) Suppose Elements(N) \neq 0. Suppose x is an element of Elements(N). Then x is an element of the places of N and an element of the transitions of N.
- (8) If x is an element of the places of N and the places of $N \neq \emptyset$, then x is an element of Elements(N).
- (9) If x is an element of the transitions of N and the transitions of $N \neq \emptyset$, then x is an element of Elements(N).

1

¹ The propositions (1)–(3) have been removed.

Let us observe that $\langle 0, 0, 0 \rangle$ is Petri.

Let us mention that there exists a net which is strict and Petri.

A Petri net is a Petri net.

The following propositions are true:

- $(11)^2$ For every Petri net N holds $x \notin$ the places of N or $x \notin$ the transitions of N.
- (12) Let N be a Petri net. Suppose $\langle x, y \rangle \in$ the flow relation of N and $x \in$ the transitions of N. Then $y \in$ the places of N.
- (13) Let *N* be a Petri net. Suppose $\langle x, y \rangle \in$ the flow relation of *N* and $y \in$ the transitions of *N*. Then $x \in$ the places of *N*.
- (14) Let *N* be a Petri net. Suppose $\langle x, y \rangle \in$ the flow relation of *N* and $x \in$ the places of *N*. Then $y \in$ the transitions of *N*.
- (15) Let N be a Petri net. Suppose $\langle x, y \rangle \in$ the flow relation of N and $y \in$ the places of N. Then $x \in$ the transitions of N.

Let N be a Petri net and let us consider x, y. We say that x is a pre-element of y in N if and only if:

(Def. 5)³ $\langle y, x \rangle \in$ the flow relation of N and $x \in$ the transitions of N.

We say that x is a post-element of y in N if and only if:

(Def. 6) $\langle x, y \rangle \in$ the flow relation of N and $x \in$ the transitions of N.

Let N be a net and let x be an element of Elements(N). The functor Pre(N,x) is defined as follows:

(Def. 7) $y \in \text{Pre}(N, x)$ iff $y \in \text{Elements}(N)$ and $\langle y, x \rangle \in \text{the flow relation of } N$.

The functor Post(N, x) is defined by:

(Def. 8) $y \in \text{Post}(N, x)$ iff $y \in \text{Elements}(N)$ and $\langle x, y \rangle \in \text{the flow relation of } N$.

Next we state several propositions:

- (16) For every Petri net N and for every element x of Elements(N) holds $Pre(N,x) \subseteq Elements(N)$.
- (17) For every Petri net N and for every element x of Elements(N) holds $Pre(N,x) \subseteq Elements(N)$.
- (18) For every Petri net N and for every element x of Elements(N) holds $Post(N,x) \subseteq Elements(N)$.
- (19) For every Petri net N and for every element x of Elements(N) holds $Post(N,x) \subseteq Elements(N)$.
- (20) Let *N* be a Petri net and *y* be an element of Elements(*N*). Suppose $y \in$ the transitions of *N*. Then $x \in \text{Pre}(N, y)$ if and only if *y* is a pre-element of *x* in *N*.
- (21) Let *N* be a Petri net and *y* be an element of Elements(*N*). Suppose $y \in$ the transitions of *N*. Then $x \in \text{Post}(N, y)$ if and only if *y* is a post-element of *x* in *N*.

Let *N* be a Petri net and let *x* be an element of Elements(*N*). Let us assume that Elements(*N*) \neq 0. The functor enter(*N*, *x*) is defined by:

² The proposition (10) has been removed.

³ The definitions (Def. 3) and (Def. 4) have been removed.

(Def. 9) If $x \in \text{the places of } N$, then $\text{enter}(N,x) = \{x\}$ and if $x \in \text{the transitions of } N$, then enter(N,x) = Pre(N,x).

One can prove the following three propositions:

- (22) For every Petri net N and for every element x of Elements(N) such that Elements(N) $\neq \emptyset$ holds enter(N, x) = $\{x\}$ or enter(N, x) = Pre(N, x).
- (23) For every Petri net N and for every element x of Elements(N) such that Elements(N) $\neq \emptyset$ holds enter(N, x) \subseteq Elements(N).
- (24) For every Petri net N and for every element x of Elements(N) such that Elements(N) $\neq \emptyset$ holds enter(N, x) \subseteq Elements(N).

Let *N* be a Petri net and let *x* be an element of Elements(*N*). Let us assume that Elements(*N*) \neq 0. The functor exit(*N*, *x*) yields a set and is defined by:

(Def. 10) If $x \in$ the places of N, then $exit(N, x) = \{x\}$ and if $x \in$ the transitions of N, then exit(N, x) = Post(N, x).

We now state three propositions:

- (25) For every Petri net N and for every element x of Elements(N) such that Elements(N) $\neq \emptyset$ holds $\text{exit}(N,x) = \{x\}$ or exit(N,x) = Post(N,x).
- (26) For every Petri net N and for every element x of Elements(N) such that Elements(N) $\neq \emptyset$ holds $\operatorname{exit}(N,x) \subseteq \operatorname{Elements}(N)$.
- (27) For every Petri net N and for every element x of Elements(N) such that Elements(N) $\neq \emptyset$ holds $\operatorname{exit}(N,x) \subseteq \operatorname{Elements}(N)$.

Let N be a Petri net and let x be an element of Elements(N). The functor field(N,x) is defined as follows:

(Def. 11) $field(N,x) = enter(N,x) \cup exit(N,x)$.

Let N be a net and let x be an element of the transitions of N. The functor Prec(N,x) is defined by:

(Def. 12) $y \in \operatorname{Prec}(N, x)$ iff $y \in \operatorname{the places of} N$ and $\langle y, x \rangle \in \operatorname{the flow relation of} N$.

The functor Postc(N,x) is defined by:

(Def. 13) $y \in \text{Postc}(N, x)$ iff $y \in \text{the places of } N$ and $\langle x, y \rangle \in \text{the flow relation of } N$.

Let N be a Petri net and let X be a set. The functor Entr(N, X) is defined by:

(Def. 14) $x \in \text{Entr}(N, X)$ iff $x \subseteq \text{Elements}(N)$ and there exists an element y of Elements(N) such that $y \in X$ and x = enter(N, y).

The functor $\operatorname{Ext}(N,X)$ is defined as follows:

(Def. 15) $x \in \text{Ext}(N, X)$ iff $x \subseteq \text{Elements}(N)$ and there exists an element y of Elements(N) such that $y \in X$ and x = exit(N, y).

The following propositions are true:

- (28) Let *N* be a Petri net, *x* be an element of Elements(*N*), and *X* be a set. If Elements(*N*) $\neq \emptyset$ and $X \subseteq \text{Elements}(N)$ and $x \in X$, then $\text{enter}(N, x) \in \text{Entr}(N, X)$.
- (29) Let *N* be a Petri net, *x* be an element of Elements(*N*), and *X* be a set. If Elements(*N*) $\neq \emptyset$ and $X \subseteq \text{Elements}(N)$ and $x \in X$, then $\text{exit}(N, x) \in \text{Ext}(N, X)$.

Let N be a Petri net and let X be a set. The functor Input(N, X) is defined as follows:

(Def. 16) Input(N, X) = $\bigcup \text{Entr}(N, X)$.

The functor Output(N, X) is defined by:

(Def. 17) Output(N, X) = $\bigcup Ext(N, X)$.

We now state four propositions:

- (30) Let N be a Petri net, given x, and X be a set. Suppose Elements $(N) \neq \emptyset$ and $X \subseteq \text{Elements}(N)$. Then $x \in \text{Input}(N,X)$ if and only if there exists an element y of Elements(N) such that $y \in X$ and $x \in \text{enter}(N,y)$.
- (31) Let N be a Petri net, given x, and X be a set. Suppose Elements $(N) \neq \emptyset$ and $X \subseteq$ Elements(N). Then $x \in \text{Output}(N,X)$ if and only if there exists an element y of Elements(N) such that $y \in X$ and $x \in \text{exit}(N,y)$.
- (32) Let N be a Petri net, X be a subset of Elements(N), and X be an element of Elements(X). Suppose Elements(X) $\neq \emptyset$. Then $X \in \text{Input}(X,X)$ if and only if one of the following conditions is satisfied:
 - (i) $x \in X$ and $x \in$ the places of N, or
- (ii) there exists an element y of Elements(N) such that $y \in X$ and $y \in$ the transitions of N and y is a pre-element of x in N.
- (33) Let N be a Petri net, X be a subset of Elements(N), and X be an element of Elements(X). Suppose Elements(X) $\neq \emptyset$. Then $X \in \text{Output}(X,X)$ if and only if one of the following conditions is satisfied:
 - (i) $x \in X$ and $x \in$ the places of N, or
- (ii) there exists an element y of Elements(N) such that $y \in X$ and $y \in$ the transitions of N and y is a post-element of x in N.

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [3] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [4] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received August 10, 1990

Published January 2, 2004