The Class of Series – Parallel Graphs. Part I

Krzysztof Retel University of Białystok

Summary. The paper introduces some preliminary notions concerning the graph theory according to [18]. We define Necklace n as a graph with vertex $\{1,2,3,\ldots,n\}$ and edge set $\{(1,2),(2,3),\ldots,(n-1,n)\}$. The goal of the article is to prove that Necklace n and Complement of Necklace n are isomorphic for n=0,1,4.

MML Identifier: NECKLACE.

WWW: http://mizar.org/JFM/Vol14/necklace.html

The articles [21], [20], [24], [11], [1], [15], [6], [3], [22], [2], [23], [25], [27], [17], [7], [12], [19], [26], [8], [10], [9], [13], [4], [5], [14], and [16] provide the notation and terminology for this paper.

1. Preliminaries

We follow the rules: n denotes a natural number and $x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3$ denote sets. Let x_1, x_2, x_3, x_4, x_5 be sets. We say that x_1, x_2, x_3, x_4, x_5 are mutually different if and only if:

(Def. 1) $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_1 \neq x_5$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_2 \neq x_5$ and $x_3 \neq x_5$ and $x_4 \neq x_5$.

We now state several propositions:

- (1) If x_1, x_2, x_3, x_4, x_5 are mutually different, then card $\{x_1, x_2, x_3, x_4, x_5\} = 5$.
- (2) $4 = \{0, 1, 2, 3\}.$
- (3) $[:\{x_1,x_2,x_3\},\{y_1,y_2,y_3\}:]=\{\langle x_1,y_1\rangle,\langle x_1,y_2\rangle,\langle x_1,y_3\rangle,\langle x_2,y_1\rangle,\langle x_2,y_2\rangle,\langle x_2,y_3\rangle,\langle x_3,y_1\rangle,\langle x_3,y_2\rangle,\langle x_3,y_3\rangle\}.$
- (4) For every set x and for every natural number n such that $x \in n$ holds x is a natural number.
- (5) For every non empty natural number x holds $0 \in x$.

Let us observe that every set which is natural is also cardinal. Let X be a set. Observe that δ_X is one-to-one.

One can prove the following proposition

(6) For every set *X* holds $\overline{\overline{id_X}} = \overline{\overline{X}}$.

Let R be a trivial binary relation. One can check that $\operatorname{dom} R$ is trivial. Let us observe that every function which is trivial is also one-to-one. One can prove the following propositions:

(7) For all functions f, g such that dom f misses dom g holds $rng(f+\cdot g) = rng f \cup rng g$.

- (8) For all one-to-one functions f, g such that dom f misses dom g and rng f misses rng g holds $(f+\cdot g)^{-1}=f^{-1}+\cdot g^{-1}$.
- (9) For all sets A, a, b holds $(A \longmapsto a) + \cdot (A \longmapsto b) = A \longmapsto b$.
- (10) For all sets a, b holds $(a \mapsto b)^{-1} = b \mapsto a$.
- (11) For all sets a, b, c, d such that a = b iff c = d holds $[a \longmapsto c, b \longmapsto d]^{-1} = [c \longmapsto a, d \longmapsto b]$.

The scheme *Convers* deals with a non empty set \mathcal{A} , a binary relation \mathcal{B} , two unary functors \mathcal{F} and \mathcal{G} yielding sets, and a unary predicate \mathcal{P} , and states that:

 $\mathcal{B}^{\smile} = \{ \langle \mathcal{F}(x), \mathcal{G}(x) \rangle; x \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[x] \}$ provided the following condition is met:

• $\mathcal{B} = \{ \langle \mathcal{G}(x), \mathcal{F}(x) \rangle; x \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[x] \}.$

Next we state the proposition

(12) For all natural numbers i, j, n such that i < j and $j \in n$ holds $i \in n$.

2. AUXILIARY CONCEPTS

Let R, S be relational structures. We say that S embeds R if and only if the condition (Def. 2) is satisfied.

- (Def. 2) There exists a map f from R into S such that
 - (i) f is one-to-one, and
 - (ii) for all elements x, y of R holds $\langle x, y \rangle \in$ the internal relation of R iff $\langle f(x), f(y) \rangle \in$ the internal relation of S.

Let *R*, *S* be non empty relational structures. Let us note that the predicate *S* embeds *R* is reflexive. We now state the proposition

(13) For all non empty relational structures *R*, *S*, *T* such that *R* embeds *S* and *S* embeds *T* holds *R* embeds *T*.

Let R, S be non empty relational structures. We say that R is equimorphic to S if and only if:

(Def. 3) R embeds S and S embeds R.

Let us notice that the predicate R is equimorphic to S is reflexive and symmetric.

Next we state the proposition

(14) Let R, S, T be non empty relational structures. Suppose R is equimorphic to S and S is equimorphic to T. Then R is equimorphic to T.

Let R be a non empty relational structure. We introduce R is parallel as an antonym of R is connected.

Let *R* be a relational structure. We say that *R* is symmetric if and only if:

(Def. 4) The internal relation of R is symmetric in the carrier of R.

Let *R* be a relational structure. We say that *R* is asymmetric if and only if:

(Def. 5) The internal relation of R is asymmetric.

Next we state the proposition

(15) Let R be a relational structure. Suppose R is asymmetric. Then the internal relation of R misses (the internal relation of R) $^{\smile}$.

Let R be a relational structure. We say that R is irreflexive if and only if:

(Def. 6) For every set x such that $x \in$ the carrier of R holds $\langle x, x \rangle \notin$ the internal relation of R.

Let n be a natural number. The functor n-SuccRelStr yields a strict relational structure and is defined as follows:

(Def. 7) The carrier of n-SuccRelStr = n and the internal relation of n-SuccRelStr = $\{\langle i, i+1 \rangle; i \text{ ranges over natural numbers: } i+1 < n\}$.

The following two propositions are true:

- (16) For every natural number n holds n-SuccRelStr is asymmetric.
- (17) If n > 0, then the internal relation of n-SuccRelStr = n 1.

Let *R* be a relational structure. The functor SymRelStr *R* yielding a strict relational structure is defined by the conditions (Def. 8).

- (Def. 8)(i) The carrier of SymRelStr R = the carrier of R, and
 - (ii) the internal relation of SymRelStr R = (the internal relation of R) \cup (the internal relation of R) $\overset{\sim}{}$.

Let *R* be a relational structure. One can check that SymRelStr *R* is symmetric.

Let us note that there exists a relational structure which is non empty and symmetric.

Let R be a symmetric relational structure. Observe that the internal relation of R is symmetric.

Let *R* be a relational structure. The functor ComplRelStr *R* yielding a strict relational structure is defined by the conditions (Def. 9).

- (Def. 9)(i) The carrier of ComplRelStr R = the carrier of R, and
 - (ii) the internal relation of ComplRelStr R = (the internal relation of R)^c \ id_{the carrier of R}.

Let *R* be a non empty relational structure. Observe that ComplRelStr*R* is non empty. Next we state the proposition

(18) Let S, R be relational structures. Suppose S and R are isomorphic. Then the internal relation of $\overline{S} = \overline{\text{the internal relation of } R}$.

3. NECKLACE n

Let n be a natural number. The functor Necklace n yielding a strict relational structure is defined by:

(Def. 10) Necklace n = SymRelStr n - SuccRelStr.

Let n be a natural number. Observe that Necklace n is symmetric. We now state two propositions:

- (19) The internal relation of Necklace $n = \{\langle i, i+1 \rangle; i \text{ ranges over natural numbers: } i+1 < n\} \cup \{\langle i+1, i \rangle; i \text{ ranges over natural numbers: } i+1 < n\}.$
- (20) Let x be a set. Then $x \in$ the internal relation of Necklace n if and only if there exists a natural number i such that i + 1 < n but $x = \langle i, i + 1 \rangle$ or $x = \langle i + 1, i \rangle$.

Let n be a natural number. One can verify that Necklace n is irreflexive. One can prove the following proposition

(21) For every natural number n holds the carrier of Necklace n = n.

Let n be a non empty natural number. Observe that Necklace n is non empty.

Let n be a natural number. Note that the carrier of Necklace n is finite.

The following propositions are true:

- (22) For all natural numbers n, i such that i + 1 < n holds $(i, i + 1) \in$ the internal relation of Necklace n.
- (23) For every natural number n and for every natural number i such that $i \in$ the carrier of Necklace n holds i < n.
- (24) For every non empty natural number *n* holds Necklace *n* is connected.
- (25) For all natural numbers i, j such that $\langle i, j \rangle \in$ the internal relation of Necklace n holds i = j + 1 or j = i + 1.
- (26) Let i, j be natural numbers. Suppose i = j + 1 or j = i + 1 but $i \in \text{the carrier of Necklace } n$ but $j \in \text{the carrier of Necklace } n$. Then $\langle i, j \rangle \in \text{the internal relation of Necklace } n$.
- (27) If n > 0, then $\overline{\{(i+1, i); i \text{ ranges over natural numbers: } i+1 < n\}} = n-1$.
- (28) If n > 0, then the internal relation of Necklace $n = 2 \cdot (n-1)$.
- (29) Necklace 1 and ComplRelStr Necklace 1 are isomorphic.
- (30) Necklace 4 and ComplRelStrNecklace 4 are isomorphic.
- (31) If Necklace n and ComplRelStr Necklace n are isomorphic, then n = 0 or n = 1 or n = 4.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [4] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel 0.html.
- [6] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [7] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [10] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [12] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [14] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [15] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [16] Adam Grabowski. On the category of posets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/orders_ 3.html.
- [17] Shunichi Kobayashi. Predicate calculus for boolean valued functions. Part XII. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/bvfunc24.html.
- [18] Stephan Thomasse. On better-quasi-ordering countable series-parallel orders. *Transactions of the American Mathematical Society*, 352(6):2491–2505, 2000.

- [19] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [20] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [22] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [23] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [24] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [25] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [26] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset 1.html.
- [27] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received November 18, 2002

Published January 2, 2004