The Class of Series-Parallel Graphs. Part II ${ }^{11}$

Krzysztof Retel
University of Białystok

Summary. In this paper we introduce two new operations on graphs: sum and union corresponding to parallel and series operation respectively. We determine N-free graph as the graph that does not embed Necklace 4. We define "fin_RelStr" as the set of all graphs with finite carriers. We also define the smallest class of graphs which contains the one-element graph and which is closed under parallel and series operations. The goal of the article is to prove the theorem that the class of finite series-parallel graphs is the class of finite N-free graphs. This paper formalizes the next part of [12].

MML Identifier: NECKLA_2.
WWW: http://mizar.org/JFM/Vol15/neckla_2.html

The articles [14], [13], [18], [7], [20], [8], [1], [2], [3], [15], [17], [4], [16], [19], [1], [5], [6], [9], and [10] provide the notation and terminology for this paper.

In this paper U is a universal class.
Next we state two propositions:
(1) For all sets X, Y such that $X \in U$ and $Y \in U$ and for every relation R between X and Y holds $R \in U$.
(2) The internal relation of Necklace $4=\{\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 2,3\rangle,\langle 3,2\rangle\}$.

Let n be a natural number. Note that every element of \mathbf{R}_{n} is finite.
One can prove the following proposition
(3) For every set x such that $x \in \mathbf{U}_{0}$ holds x is finite.

One can verify that every element of \mathbf{U}_{0} is finite.
Let us mention that every number which is finite and ordinal is also natural.
Let G be a non empty relational structure. We say that G is N -free if and only if:
(Def. 1) G does not embed Necklace 4.
Let us mention that there exists a non empty relational structure which is strict, finite, and N -free.
Let R, S be relational structures. The functor $\operatorname{UnionOf}(R, S)$ yielding a strict relational structure is defined by the conditions (Def. 2).
(Def. 2)(i) The carrier of $\operatorname{UnionOf}(R, S)=($ the carrier of $R) \cup$ (the carrier of S), and
(ii) the internal relation of $\operatorname{UnionOf}(R, S)=($ the internal relation of $R) \cup($ the internal relation of S).

[^0]Let R, S be relational structures. The functor $\operatorname{SumOf}(R, S)$ yields a strict relational structure and is defined by the conditions (Def. 3).
(Def. 3)(i) The carrier of $\operatorname{SumOf}(R, S)=($ the carrier of $R) \cup($ the carrier of $S)$, and
(ii) the internal relation of $\operatorname{SumOf}(R, S)=($ the internal relation of $R) \cup$ (the internal relation of $S) \cup[$: the carrier of R, the carrier of $S:] \cup[$ the carrier of S, the carrier of $R:]$.

The functor FinRelStr is defined by the condition (Def. 4).
(Def. 4) Let X be a set. Then $X \in$ FinRelStr if and only if there exists a strict relational structure R such that $X=R$ and the carrier of $R \in \mathbf{U}_{0}$.

One can check that FinRelStr is non empty.
The subset FinRelStrSp of FinRelStr is defined by the conditions (Def. 5).
(Def. 5)(i) For every strict relational structure R such that the carrier of R is non empty and trivial and the carrier of $R \in \mathbf{U}_{0}$ holds $R \in$ FinRelStrSp,
(ii) for all strict relational structures H_{1}, H_{2} such that the carrier of H_{1} misses the carrier of H_{2} and $H_{1} \in$ FinRelStrSp and $H_{2} \in$ FinRelStrSp holds UnionOf $\left(H_{1}, H_{2}\right) \in$ FinRelStrSp and $\operatorname{SumOf}\left(H_{1}, H_{2}\right) \in \operatorname{FinRelStrSp}$, and
(iii) for every subset M of FinRelStr such that for every strict relational structure R such that the carrier of R is non empty and trivial and the carrier of $R \in \mathbf{U}_{0}$ holds $R \in M$ and for all strict relational structures H_{1}, H_{2} such that the carrier of H_{1} misses the carrier of H_{2} and $H_{1} \in M$ and $H_{2} \in M$ holds UnionOf $\left(H_{1}, H_{2}\right) \in M$ and $\operatorname{SumOf}\left(H_{1}, H_{2}\right) \in M$ holds FinRelStrSp $\subseteq M$.

Let us note that FinRelStrSp is non empty.
The following four propositions are true:
(4) For every set X such that $X \in$ FinRelStrSp holds X is a finite strict non empty relational structure.
(5) For every relational structure R such that $R \in$ FinRelStrSp holds the carrier of $R \in \mathbf{U}_{0}$.
(6) Let X be a set. Suppose $X \in$ FinRelStrSp. Then
(i) X is a strict non empty trivial relational structure, or
(ii) there exist strict relational structures H_{1}, H_{2} such that the carrier of H_{1} misses the carrier of H_{2} and $H_{1} \in \operatorname{FinRelStrSp}$ and $H_{2} \in \operatorname{FinRelStrSp}$ and $X=\operatorname{UnionOf}\left(H_{1}, H_{2}\right)$ or $X=\operatorname{SumOf}\left(H_{1}, H_{2}\right)$.
(7) For every strict non empty relational structure R such that $R \in$ FinRelStrSp holds R is N free.

References

[1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. ordinal2.html
[4] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1. html.
[5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[9] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/classes2.html
[10] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html
[11] Krzysztof Retel. The class of series - parallel graphs. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/JFM/ Vol14/necklace.html
[12] Stephan Thomasse. On better-quasi-ordering countable series-parallel orders. Transactions of the American Mathematical Society, 352(6):2491-2505, 2000.
[13] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[16] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html
[17] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html
[18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html
[20] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Received May 29, 2003
Published January 2, 2004

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

