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Summary. We present well known concepts of category theory: natural transforma-
tions and functor categories, and prove propositions related to. Because of the formalization
it proved to be convenient to introduce some auxiliary notions, for instance: transformations.
We mean by a transformation of a functeto a functorG, both covariant functors frorA to
B, a function mapping the objects Afto the morphisms dB and assigning to an objeaif A
an element of HortF (a), G(a)). The material included roughly corresponds to that presented
on pages 18,129-130,137-138 of the monography ([9]). We also introduce discrete categories
and prove some propositions to illustrate the concepts introduced.

MML Identifier: NATTRA_1.

WWW: http://mizar.org/JFM/Vol3/nattra_1.html

The articles([10],[15],[1R],11],18],1213],[12], 8], 6], T1], (4], andL][7] provide the notation and
terminology for this paper.

1. PRELIMINARIES

For simplicity, we follow the rulesA;, Az, By, B2 denote non empty set$, denotes a function
from A; into By, g denotes a function from; into By, Y1 denotes a non empty subsetAaf andY,
denotes a non empty subset/of

Let A; be a set, leB; be a non empty set, ldt be a function fromA; into B, and letY; be a
subset ofA;. Thenf|Y; is a function fromy; into B;.

One can prove the following proposition

1) [Ff,9lllYa, Y2 =[fIVYe, 92,

Let A, B be non empty sets, I1&; be a non empty subset &f let B; be a non empty subset of
B, let f be a partial function fronfiAs, A; ] to A;, and letg be a partial function fronfiBy, B ] to
B1. Then|:f, g:| is a partial function front [ Aq, B1 ], [ A1, B1]] to [ Ag, By 1.

The following proposition is true

(2) Let f be a partial function front A, A1 ] to Aq, g be a partial function front Ay, Az ]
to A, andF be a partial function frontYs, Y1 to Y1. Supposeé= = f[([ Y1, Y1] qua sed.
Let G be a partial function fronfiY2, Y2 to Yo. If G = g[([ Y2, Y2] qua sed, then|:F, G:| =
£, 9 1(F[Ya, Y20, [ Y1, Yo ] quased.

We adopt the following conventior, B, C are categoried;, Fi, F, F3 are functors fromA to
B, andG is a functor fromB to C.

1 © Association of Mizar Users
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The schemd/ Choicedeals with a non empty sét, a non empty seB, and a unary functofr
yielding a set, and states that:
There exists a functioh from 4 into B such that for every elemeatof 4 holds
t(a) € F(a)
provided the parameters satisfy the following condition:
e For every elemerd of 4 holdsB meets¥ (a).
The following proposition is true

(3) For every objeca of A and for every morphisrm from a to a holdsm € hom(a, a).

In the sequein, o0 denote sets.
One can prove the following propositions:

(4) For all morphismd, g of ©(0,m) holdsf = g.

(5) For every objeca of A holds{{(id,, id4), ida) € the composition oA.
(6) The composition of>(0,m) = {({m, m), m)}.

(7) For every objeca of A holds?)(a,id,) is a subcategory of.

(8) LetC be a subcategory &. Then

(i) the dom-map o€ = (the dom-map oA\) [(the morphisms of),

(i) the cod-map ofc = (the cod-map oh\) [(the morphisms o€),

(i)  the composition ofC = (the composition of\) [:the morphisms o€, the morphisms of
CJ, and

(iv) the id-map ofC = (the id-map ofA) [(the objects o).

(9) LetObe anonempty subset of the object®\plM be a non empty subset of the morphisms
of A, andD, C; be functions fromM into O. SupposeD; = (the dom-map ofA)[M and
Cy = (the cod-map of\) [M. Let C; be a partial function fronfi M, (M qua non empty set):

to M. Suppose&; = (the composition o) [([:M, M ] qua sej. Let |1 be a function fronD
into M. Supposé; = (the id-map ofA) [O. Then(O,M,D1,Cy,Cy, 1) is a subcategory oA.

(10) LetC be a strict category amilbe a strict subcategory &f Suppose the objects Af=the
objects ofC and the morphisms @& = the morphisms o€. ThenA=C.

2. APPLICATION OF A FUNCTOR TO A MORPHISM

Let us consideA, B, F and leta, b be objects ofA. Let us assume that hdmb) +# 0. Let f be
a morphism froma to b. The functorF (f) yielding a morphism fronf (a) to F(b) is defined as
follows:

(Def. 1) F(f)=F(f).
One can prove the following propositions:

(11) For all objects, b of A such that horte,b) # 0 and for every morphisnf fromatob
holds(G-F)(f) = G(F(f)).

(12) LetF;, R be functors fromA to B. Suppose that for all objects b of A such that
hom(a, b) # 0 and for every morphisnfi from ato b holdsF;(f) = F»(f). ThenF; = F,.

(13) Leta, b, cbe objects oA. Suppose hoifa, b) # 0 and hontb,c) £ 0. Let f be a morphism
from ato b andg be a morphism fronbto c. ThenF(g- f) = F(g)-F(f).

(14) For every objeat of A and for every objeatl of B such thaf (idc) = idgq holdsF (c) = d.
(15) For every objeca of A holdsF (ida) = idk (4)-

(16) For all objects, b of A such that horfa,b) # 0 and for every morphisnf from ato b
holds ich(f) = f.

(17) For all objects, b, c, d of A such that horta, b) meets horfc,d) holdsa= c andb =d.
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3. TRANSFORMATIONS

Let us consideA, B, Fi, F,. We say thaF; is transformable té- if and only if:
(Def. 2) For every objech of A holds honiF(a),:(a)) # 0.

Let us note that the predicalg is transformable té, is reflexive.
We now state the proposition

(19E] If F is transformable té4 andF; is transformable té», thenF is transformable té.

Let us consideA, B, F1, F. Let us assume th& is transformable té». A function from the
objects ofA into the morphisms dB is said to be a transformation froRa to  if:

(Def. 3) For every objech of A holds it(a) is a morphism fronf (a) to F»(a).

Let us consideA, B and letF be a functor fromA to B. The functor i¢ yields a transformation
fromF to F and is defined by:

(Def. 4)  For every objeci of A holds id-(a) = idr ().

Let us consideA, B, F, F,. Let us assume th& is transformable t&». Lett be a transforma-
tion from F; to F, and leta be an object oA. The functort(a) yielding a morphism fronf; (a) to
F(a) is defined as follows:

(Def.5) t(a) =t(a).

Let us consideA, B, F, F;, . Let us assume thdt is transformable td- andF; is trans-
formable toF,. Lett; be a transformation frork to F; and lett, be a transformation frorg; to F.
The functort; ° t; yields a transformation frork to F; and is defined by:

(Def. 6) For every objeca of Aholds(tz°t1)(a) =t2(a) -t1(a).
We now state four propositions:

(20) Supposé is transformable té~. Letty, to be transformations frork; to F. If for every
objecta of A holdst;(a) =tz(a), thent; =ts.

(21) For every objeca of A holds id-(a) = idr (a)-

(22) If Fyis transformable té, then for every transformatidrfrom F; to F; holds idg,) ot =t
andt- id(pl) =t.

(23) Supposé is transformable té; andF; is transformable té» andF; is transformable to
Fs. Lett; be a transformation frorR to Fq, t; be a transformation fror; to R, andts be a
transformation front, to Fs. Then(tz°ty)°t; =t3° (tx°ty).

4. NATURAL TRANSFORMATIONS

Let us consider, B, F1, F,. We say that; is naturally transformable t6, if and only if the
conditions (Def. 7) are satisfied.
(Def. 7)(i)) Fyis transformable té, and
(i) there exists a transformatidnfrom F; to > such that for all objects, b of A such that
hom(a,b) # 0 and for every morphisnfi from ato b holdst(b) - F1(f) = F(f) - t(a).

Let us note that the predicaftg is naturally transformable t; is reflexive.
One can prove the following proposition

1 The proposition (18) has been removed.
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(ZSE] Supposé- is naturally transformable tB; andF; is naturally transformable t6,. Then
F is naturally transformable t6,.

Let us consideA, B, F1, F. Let us assume th# is naturally transformable tB,. A transfor-
mation fromF; to R is said to be a natural transformation frémto F if:

(Def. 8) For all objects, b of A such that horfa,b) # 0 and for every morphisnf from ato b
holds itb) - F1(f) = F(f) -it(a).

Let us consideA, B, F. Then i¢: is a natural transformation frofto F.

Let us consideA, B, F, F1, . Let us assume th#t is naturally transformable t6; andF; is
naturally transformable tB,. Lett; be a natural transformation frofto F; and lett; be a natural
transformation froni to F,. The functortz © t; yields a natural transformation fromto F, and is
defined by:

(Def.9) trety =troty.
Next we state the proposition

(26) Supposé is naturally transformable tB,. Lett be a natural transformation frof to
F,. Then inz) °t=tandt° id(Fl) =t.

In the sequet denotes a natural transformation fréirto F; andt; denotes a natural transfor-
mation fromF; to F.
One can prove the following propositions:

(27) Supposé is naturally transformable tB; andF; is naturally transformable tB,. Lett;
be a natural transformation fromto F, t, be a natural transformation from to F, anda
be an object oA. Then(tz°t1)(a) =t2(a) -t1(a).

(28) Supposéd- is naturally transformable t&; and F; is naturally transformable t6, and
F, is naturally transformable tB;. Letts be a natural transformation frof to F3. Then
(tzetg) ot =tz° (t1°1).

Let us consideA, B, F;, F, and letl, be a transformation frorf;, to F,. We say that is
invertible if and only if:

(Def. 10) For every objea of A holdsly(a) is invertible.
Let us consideA, B, F1, Fo. We say thaf; andF, are naturally equivalent if and only if:

(Def. 11) F4 is naturally transformable tB, and there exists a natural transformation frBirto
which is invertible.

Let us note that the predicalfle andF, are naturally equivalent is reflexive. We introdUee~ F,
as a synonym df; andF, are naturally equivalent.

Let us consideA, B, F, F. Let us assume thé is transformable té~. Lett; be a transfor-
mation fromF; to F>. Let us assume thét is invertible. The functot; ! yielding a transformation
from F, to F1 is defined as follows:

(Def. 12) For every objeat of A holdst; ~*(a) =t;(a) 2.

Let us consideA, B, F1, F, t1. Let us assume th&y is naturally transformable tB, andt; is
invertible. The functot; ~* yields a natural transformation froRa to F; and is defined by:

(Def. 13) t;7 = (t; qua transformation fronf; to F>) L.

The following three propositions are true:

2 The proposition (24) has been removed.
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(30 Let givenA, B, F1, I, t1. Supposé-; is naturally transformable tB, andt; is invertible.
Let a be an object oA. Thent;~1(a) =t;(a)~L.

(31) IfF 2k, thenk 2 F.
(32) IfF =k andk 2 Fs, thenF 2 Fs.

Let us consideA, B, Fi, F. Let us assume thd& andF, are naturally equivalent. A natural
transformation froni; to F; is said to be a natural equivalenceFafandF; if:

(Def. 14) ltisinvertible.

The following propositions are true:

(33) ide is a natural equivalence &f andF.

(34) Supposé&; = F, andR, = F3. Lett be a natural equivalence Bf andF, andt’ be a natural
equivalence of» andFs. Thent’ -t is a natural equivalence & andFs.

5. FUNCTOR CATEGORY

Let us consideA, B. A non empty set is called a set of natural transformations ffota B if it
satisfies the condition (Def. 15).

(Def. 15) Letx be a set. Supposec it. Then there exist functorg;, F, from A to B and there
exists a natural transformatiarfrom F; to F, such thaik = {{F1, F»), t) andF; is naturally
transformable td-.

Let us consideA, B. The functor NatTran@\, B) yielding a set of natural transformations from
Ato B is defined by the condition (Def. 16).

(Def. 16) Letx be a set. Ther € NatTrangA, B) if and only if there exist functork;, F, from A to
B and there exists a natural transformatidrom F; to F, such thatk = ((F1, F2), t) andF;
is naturally transformable tié,.

Let Az, B1, A2, B2 be non empty sets, Iy be a function fromA; into B;, and letf, be a
function fromA; into B,. Let us observe thay = f;, if and only if:

(Def. 17) Aq = Ay and for every elemerat of A; holds f1(a) = f2(a).

Next we state the proposition
(35) Fq is naturally transformable 6, iff ((F1, F2),t1) € NatTrangA, B).

Let us conside, B. The functorB? yielding a strict category is defined by the conditions
(Def. 18).
(Def. 18)(i)  The objects oB” = Func(A,B),
(i) the morphisms oB” = NatTrangA, B),
(iii) ~ for every morphismf of BA holds domf = (f1); and codf = (fy),,

(iv) for all morphismsf, g of BA such that dorg = codf holds(g, f) € dom (the composition
of BA),

(v) for all morphismsf, g of BA such thai{g, f) € dom (the composition d8") there exisF,
F1, Fo, t, ty such thatf = ((F, F1),t) andg = ({F1, 2), t1) and (the composition &")({(g,
f)) = {(F, R), t1°t), and

(vi) for every objecta of BA and for everyF such thaF = a holds id, = ((F, F), idr).

The following propositions are true:

3 The proposition (29) has been removed.
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(39@ For every morphisnf of BA such thatf = ((F, F1), t) holds domf = F and codf = F;.

(40) Leta, b be objects oB* and f be a morphism frona to b. If hom(a, b) # 0, then there
existF, Fi, t such thaa=F andb=F; andf = ((F, F), t).

(41) Lett’ be a natural transformation frof to F3 and f, g be morphisms oB*. Suppose
f = ((F,F1),t) andg = ({F, F3),t'). Then{(g, f) € dom(the composition oB*) if and
only if F = F.

(42) For all morphismg, g of BA such thatf = ((F, F1), t) andg = ({F1, F2), t1) holdsg- f =
((F, R), t1°t).

6. DISCRETE CATEGORIES

LetC be a category. We say th@tis discrete if and only if:
(Def. 19) For every morphisrh of C there exists an objeetof C such thatf = ida.

One can verify that there exists a category which is discrete.
The following propositions are true:

(44E] For every discrete categofyand for every objeca of A holds honfa, a) = {ida}.

(45) Aisdiscrete if and only if the following conditions are satisfied:

(i) for every objecta of A there exists a finite s& such thaB = hom(a,a) and car® = 1,
and

(i) for all objectsa, b of A such thatn # b holds honga, b) = 0.
(46) O(o,m) is discrete.
(47) For every discrete categofyholds every subcategory éfis discrete.
(48) If Ais discrete and is discrete, thef A, B] is discrete.

(49) LetA be a discrete categor, be a category, aniy, F, be functors fromB to A. If F; is
transformable td~, thenF; = F,.

(50) LetA be a discrete categord be a categoryf be a functor fromB to A, andt be a
transformation fronf to F. Thent = idg.

(51) If Ais discrete, the® is discrete.

LetC be a category. Note that there exists a subcategd®ndifich is strict and discrete.
Let us conside€C. The functor IdCaf yields a strict discrete subcategory®@fand is defined

by:

(Def. 20) The objects of IdC&t = the objects ofZ and the morphisms of IdC&t= {id, : a ranges
over objects oC}.

One can prove the following propositions:

(52) For every strict catego@ such thatC is discrete holds IdCé& = C.
(53) IdCatldCa€ = IdCatC.

(54) ldCat)(o,m) = H(o,m).

(55) IdCaftA, B]=[IdCatA, IdCatB].

4 The propositions (36)—(38) have been removed.
5 The proposition (43) has been removed.
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