Natural transformations. Discrete categories

Andrzej Trybulec Warsaw University Białystok

Summary. We present well known concepts of category theory: natural transformations and functor categories, and prove propositions related to. Because of the formalization it proved to be convenient to introduce some auxiliary notions, for instance: transformations. We mean by a transformation of a functor F to a functor G, both covariant functors from A to B, a function mapping the objects of A to the morphisms of B and assigning to an object a of a an element of a hom a hom a homography (9). We also introduce discrete categories and prove some propositions to illustrate the concepts introduced.

MML Identifier: NATTRA_1.

WWW: http://mizar.org/JFM/Vol3/nattra_1.html

The articles [10], [5], [12], [11], [8], [13], [2], [3], [6], [1], [4], and [7] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we follow the rules: A_1 , A_2 , B_1 , B_2 denote non empty sets, f denotes a function from A_1 into B_1 , g denotes a function from A_2 into B_2 , Y_1 denotes a non empty subset of A_1 , and Y_2 denotes a non empty subset of A_2 .

Let A_1 be a set, let B_1 be a non empty set, let f be a function from A_1 into B_1 , and let Y_1 be a subset of A_1 . Then $f \upharpoonright Y_1$ is a function from Y_1 into B_1 .

One can prove the following proposition

(1) $[:f,g:] \upharpoonright [:Y_1,Y_2:] = [:f \upharpoonright Y_1,g \upharpoonright Y_2:].$

Let A, B be non empty sets, let A_1 be a non empty subset of A, let B_1 be a non empty subset of B, let f be a partial function from $[:A_1,A_1:]$ to A_1 , and let g be a partial function from $[:B_1,B_1:]$ to B_1 . Then |:f,g:| is a partial function from $[:[:A_1,B_1:],[:A_1,B_1:]:]$ to $[:A_1,B_1:]$.

The following proposition is true

(2) Let f be a partial function from $[:A_1, A_1:]$ to A_1 , g be a partial function from $[:A_2, A_2:]$ to A_2 , and F be a partial function from $[:Y_1, Y_1:]$ to Y_1 . Suppose $F = f \upharpoonright ([:Y_1, Y_1:]$ **qua** set). Let G be a partial function from $[:Y_2, Y_2:]$ to Y_2 . If $G = g \upharpoonright ([:Y_2, Y_2:]$ **qua** set), then $|:F, G:| = |:f, g:| \upharpoonright ([::Y_1, Y_2:], [:Y_1, Y_2:]:]$ **qua** set).

We adopt the following convention: A, B, C are categories, F, F_1 , F_2 , F_3 are functors from A to B, and G is a functor from B to C.

The scheme *M Choice* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding a set, and states that:

There exists a function t from \mathcal{A} into \mathcal{B} such that for every element a of \mathcal{A} holds $t(a) \in \mathcal{F}(a)$

provided the parameters satisfy the following condition:

• For every element a of \mathcal{A} holds \mathcal{B} meets $\mathcal{F}(a)$.

The following proposition is true

(3) For every object a of A and for every morphism m from a to a holds $m \in \text{hom}(a, a)$.

In the sequel m, o denote sets.

One can prove the following propositions:

- (4) For all morphisms f, g of $\circlearrowright(o,m)$ holds f = g.
- (5) For every object a of A holds $\langle (id_a, id_a), id_a \rangle \in the$ composition of A.
- (6) The composition of $\circlearrowright(o,m) = \{\langle\langle m,m\rangle,m\rangle\}.$
- (7) For every object a of A holds $\circlearrowright(a, \mathrm{id}_a)$ is a subcategory of A.
- (8) Let C be a subcategory of A. Then
- (i) the dom-map of $C = (\text{the dom-map of } A) \upharpoonright (\text{the morphisms of } C),$
- (ii) the cod-map of $C = (\text{the cod-map of } A) \upharpoonright (\text{the morphisms of } C),$
- (iii) the composition of C =(the composition of A) \upharpoonright [: the morphisms of C, the morphisms of C:], and
- (iv) the id-map of $C = (\text{the id-map of } A) \upharpoonright (\text{the objects of } C)$.
- (9) Let O be a non empty subset of the objects of A, M be a non empty subset of the morphisms of A, and D_1 , C_1 be functions from M into O. Suppose $D_1 =$ (the dom-map of A) $\upharpoonright M$ and $C_1 =$ (the cod-map of A) $\upharpoonright M$. Let C_2 be a partial function from [:M, (M qua non empty set):] to M. Suppose $C_2 =$ (the composition of A) $\upharpoonright ([:M, M:] \text{ qua set})$. Let I_1 be a function from O into O. Suppose O O into O into
- (10) Let C be a strict category and A be a strict subcategory of C. Suppose the objects of A = the objects of C and the morphisms of A = the morphisms of C. Then A = C.

2. APPLICATION OF A FUNCTOR TO A MORPHISM

Let us consider A, B, F and let a, b be objects of A. Let us assume that $hom(a,b) \neq \emptyset$. Let f be a morphism from a to b. The functor F(f) yielding a morphism from F(a) to F(b) is defined as follows:

(Def. 1) F(f) = F(f).

One can prove the following propositions:

- (11) For all objects a, b of A such that $hom(a,b) \neq \emptyset$ and for every morphism f from a to b holds $(G \cdot F)(f) = G(F(f))$.
- (12) Let F_1 , F_2 be functors from A to B. Suppose that for all objects a, b of A such that $hom(a,b) \neq \emptyset$ and for every morphism f from a to b holds $F_1(f) = F_2(f)$. Then $F_1 = F_2$.
- (13) Let a, b, c be objects of A. Suppose $hom(a,b) \neq \emptyset$ and $hom(b,c) \neq \emptyset$. Let f be a morphism from a to b and g be a morphism from b to c. Then $F(g \cdot f) = F(g) \cdot F(f)$.
- (14) For every object c of A and for every object d of B such that $F(\mathrm{id}_c) = \mathrm{id}_d$ holds F(c) = d.
- (15) For every object a of A holds $F(id_a) = id_{F(a)}$.
- (16) For all objects a, b of A such that $hom(a,b) \neq \emptyset$ and for every morphism f from a to b holds $id_A(f) = f$.
- (17) For all objects a, b, c, d of A such that hom(a,b) meets hom(c,d) holds a = c and b = d.

3. Transformations

Let us consider A, B, F_1 , F_2 . We say that F_1 is transformable to F_2 if and only if:

(Def. 2) For every object a of A holds hom $(F_1(a), F_2(a)) \neq \emptyset$.

Let us note that the predicate F_1 is transformable to F_2 is reflexive.

We now state the proposition

 $(19)^{1}$ If F is transformable to F_{1} and F_{1} is transformable to F_{2} , then F is transformable to F_{2} .

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is transformable to F_2 . A function from the objects of A into the morphisms of B is said to be a transformation from F_1 to F_2 if:

(Def. 3) For every object a of A holds it(a) is a morphism from $F_1(a)$ to $F_2(a)$.

Let us consider A, B and let F be a functor from A to B. The functor id_F yields a transformation from F to F and is defined by:

(Def. 4) For every object a of A holds $id_F(a) = id_{F(a)}$.

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 and let a be an object of A. The functor t(a) yielding a morphism from $F_1(a)$ to $F_2(a)$ is defined as follows:

(Def. 5)
$$t(a) = t(a)$$
.

Let us consider A, B, F, F_1 , F_2 . Let us assume that F is transformable to F_1 and F_1 is transformable to F_2 . Let t_1 be a transformation from F to F_1 and let t_2 be a transformation from F_1 to F_2 . The functor $t_2 \circ t_1$ yields a transformation from F to F_2 and is defined by:

(Def. 6) For every object a of A holds $(t_2 \circ t_1)(a) = t_2(a) \cdot t_1(a)$.

We now state four propositions:

- (20) Suppose F_1 is transformable to F_2 . Let t_1 , t_2 be transformations from F_1 to F_2 . If for every object a of A holds $t_1(a) = t_2(a)$, then $t_1 = t_2$.
- (21) For every object a of A holds $id_F(a) = id_{F(a)}$.
- (22) If F_1 is transformable to F_2 , then for every transformation t from F_1 to F_2 holds $id_{(F_2)} \circ t = t$ and $t \circ id_{(F_1)} = t$.
- (23) Suppose F is transformable to F_1 and F_1 is transformable to F_2 and F_2 is transformable to F_3 . Let t_1 be a transformation from F to F_1 , t_2 be a transformation from F_1 to F_2 , and t_3 be a transformation from F_2 to F_3 . Then $(t_3 \circ t_2) \circ t_1 = t_3 \circ (t_2 \circ t_1)$.

4. NATURAL TRANSFORMATIONS

Let us consider A, B, F_1 , F_2 . We say that F_1 is naturally transformable to F_2 if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) F_1 is transformable to F_2 , and

(ii) there exists a transformation t from F_1 to F_2 such that for all objects a, b of A such that $hom(a,b) \neq \emptyset$ and for every morphism f from a to b holds $t(b) \cdot F_1(f) = F_2(f) \cdot t(a)$.

Let us note that the predicate F_1 is naturally transformable to F_2 is reflexive. One can prove the following proposition

¹ The proposition (18) has been removed.

 $(25)^2$ Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Then F is naturally transformable to F_2 .

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is naturally transformable to F_2 . A transformation from F_1 to F_2 is said to be a natural transformation from F_1 to F_2 if:

(Def. 8) For all objects a, b of A such that $hom(a,b) \neq \emptyset$ and for every morphism f from a to b holds $it(b) \cdot F_1(f) = F_2(f) \cdot it(a)$.

Let us consider A, B, F. Then id_F is a natural transformation from F to F.

Let us consider A, B, F, F_1 , F_2 . Let us assume that F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from F to F_1 and let t_2 be a natural transformation from F to F_2 . The functor $t_2 \circ t_1$ yields a natural transformation from F to F_2 and is defined by:

(Def. 9)
$$t_2 \circ t_1 = t_2 \circ t_1$$
.

Next we state the proposition

(26) Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then $\mathrm{id}_{(F_2)} \circ t = t$ and $t \circ \mathrm{id}_{(F_1)} = t$.

In the sequel t denotes a natural transformation from F to F_1 and t_1 denotes a natural transformation from F_1 to F_2 .

One can prove the following propositions:

- (27) Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from F to F_1 , t_2 be a natural transformation from F_1 to F_2 , and a be an object of A. Then $(t_2 \circ t_1)(a) = t_2(a) \cdot t_1(a)$.
- (28) Suppose F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 . Let t_3 be a natural transformation from F_2 to F_3 . Then $(t_3 \circ t_1) \circ t = t_3 \circ (t_1 \circ t)$.

Let us consider A, B, F_1 , F_2 and let I_2 be a transformation from F_1 to F_2 . We say that I_2 is invertible if and only if:

(Def. 10) For every object a of A holds $I_2(a)$ is invertible.

Let us consider A, B, F_1 , F_2 . We say that F_1 and F_2 are naturally equivalent if and only if:

(Def. 11) F_1 is naturally transformable to F_2 and there exists a natural transformation from F_1 to F_2 which is invertible.

Let us note that the predicate F_1 and F_2 are naturally equivalent is reflexive. We introduce $F_1 \cong F_2$ as a synonym of F_1 and F_2 are naturally equivalent.

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is transformable to F_2 . Let t_1 be a transformation from F_1 to F_2 . Let us assume that t_1 is invertible. The functor t_1^{-1} yielding a transformation from F_2 to F_1 is defined as follows:

(Def. 12) For every object a of A holds $t_1^{-1}(a) = t_1(a)^{-1}$.

Let us consider A, B, F_1 , F_2 , t_1 . Let us assume that F_1 is naturally transformable to F_2 and t_1 is invertible. The functor t_1^{-1} yields a natural transformation from F_2 to F_1 and is defined by:

(Def. 13) $t_1^{-1} = (t_1 \text{ qua transformation from } F_1 \text{ to } F_2)^{-1}$.

The following three propositions are true:

² The proposition (24) has been removed.

- (30)³ Let given A, B, F_1 , F_2 , t_1 . Suppose F_1 is naturally transformable to F_2 and t_1 is invertible. Let a be an object of A. Then $t_1^{-1}(a) = t_1(a)^{-1}$.
- (31) If $F_1 \cong F_2$, then $F_2 \cong F_1$.
- (32) If $F_1 \cong F_2$ and $F_2 \cong F_3$, then $F_1 \cong F_3$.

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 and F_2 are naturally equivalent. A natural transformation from F_1 to F_2 is said to be a natural equivalence of F_1 and F_2 if:

(Def. 14) It is invertible.

The following propositions are true:

- (33) id_F is a natural equivalence of F and F.
- (34) Suppose $F_1 \cong F_2$ and $F_2 \cong F_3$. Let t be a natural equivalence of F_1 and F_2 and t' be a natural equivalence of F_2 and F_3 . Then $t' \circ t$ is a natural equivalence of F_1 and F_3 .

5. Functor category

Let us consider A, B. A non empty set is called a set of natural transformations from A to B if it satisfies the condition (Def. 15).

(Def. 15) Let x be a set. Suppose $x \in$ it. Then there exist functors F_1 , F_2 from A to B and there exists a natural transformation t from F_1 to F_2 such that $x = \langle \langle F_1, F_2 \rangle, t \rangle$ and F_1 is naturally transformable to F_2 .

Let us consider A, B. The functor NatTrans(A,B) yielding a set of natural transformations from A to B is defined by the condition (Def. 16).

(Def. 16) Let x be a set. Then $x \in \operatorname{NatTrans}(A, B)$ if and only if there exist functors F_1 , F_2 from A to B and there exists a natural transformation t from F_1 to F_2 such that $x = \langle \langle F_1, F_2 \rangle, t \rangle$ and F_1 is naturally transformable to F_2 .

Let A_1 , B_1 , A_2 , B_2 be non empty sets, let f_1 be a function from A_1 into B_1 , and let f_2 be a function from A_2 into B_2 . Let us observe that $f_1 = f_2$ if and only if:

(Def. 17) $A_1 = A_2$ and for every element a of A_1 holds $f_1(a) = f_2(a)$.

Next we state the proposition

(35) F_1 is naturally transformable to F_2 iff $\langle \langle F_1, F_2 \rangle, t_1 \rangle \in \text{NatTrans}(A, B)$.

Let us consider A, B. The functor B^A yielding a strict category is defined by the conditions (Def. 18).

- (Def. 18)(i) The objects of $B^A = \text{Funct}(A, B)$,
 - (ii) the morphisms of $B^A = \text{NatTrans}(A, B)$,
 - (iii) for every morphism f of B^A holds dom $f = (f_1)_1$ and cod $f = (f_1)_2$,
 - (iv) for all morphisms f, g of B^A such that dom $g = \operatorname{cod} f$ holds $\langle g, f \rangle \in \operatorname{dom}$ (the composition of B^A),
 - (v) for all morphisms f, g of B^A such that $\langle g, f \rangle \in \text{dom}$ (the composition of B^A) there exist F, F_1, F_2, t, t_1 such that $f = \langle \langle F, F_1 \rangle, t \rangle$ and $g = \langle \langle F_1, F_2 \rangle, t_1 \rangle$ and (the composition of B^A)($\langle g, f \rangle$) = $\langle \langle F, F_2 \rangle, t_1 \circ t \rangle$, and
 - (vi) for every object a of B^A and for every F such that F = a holds $id_a = \langle \langle F, F \rangle, id_F \rangle$.

The following propositions are true:

³ The proposition (29) has been removed.

- $(39)^4$ For every morphism f of B^A such that $f = \langle \langle F, F_1 \rangle, t \rangle$ holds dom f = F and cod $f = F_1$.
- (40) Let a, b be objects of B^A and f be a morphism from a to b. If $hom(a,b) \neq \emptyset$, then there exist F, F_1, t such that a = F and $b = F_1$ and $f = \langle \langle F, F_1 \rangle, t \rangle$.
- (41) Let t' be a natural transformation from F_2 to F_3 and f, g be morphisms of B^A . Suppose $f = \langle \langle F, F_1 \rangle, t \rangle$ and $g = \langle \langle F_2, F_3 \rangle, t' \rangle$. Then $\langle g, f \rangle \in \text{dom}$ (the composition of B^A) if and only if $F_1 = F_2$.
- (42) For all morphisms f, g of B^A such that $f = \langle \langle F, F_1 \rangle, t \rangle$ and $g = \langle \langle F_1, F_2 \rangle, t_1 \rangle$ holds $g \cdot f = \langle \langle F, F_2 \rangle, t_1 \circ t \rangle$.

6. DISCRETE CATEGORIES

Let C be a category. We say that C is discrete if and only if:

(Def. 19) For every morphism f of C there exists an object a of C such that $f = \mathrm{id}_a$.

One can verify that there exists a category which is discrete.

The following propositions are true:

- (44)⁵ For every discrete category A and for every object a of A holds $hom(a, a) = \{id_a\}$.
- (45) A is discrete if and only if the following conditions are satisfied:
- (i) for every object a of A there exists a finite set B such that B = hom(a, a) and card B = 1, and
- (ii) for all objects a, b of A such that $a \neq b$ holds hom $(a,b) = \emptyset$.
- (46) $\dot{\bigcirc}(o,m)$ is discrete.
- (47) For every discrete category A holds every subcategory of A is discrete.
- (48) If A is discrete and B is discrete, then [:A, B:] is discrete.
- (49) Let A be a discrete category, B be a category, and F_1 , F_2 be functors from B to A. If F_1 is transformable to F_2 , then $F_1 = F_2$.
- (50) Let A be a discrete category, B be a category, F be a functor from B to A, and t be a transformation from F to F. Then $t = id_F$.
- (51) If A is discrete, then A^B is discrete.

Let *C* be a category. Note that there exists a subcategory of *C* which is strict and discrete. Let us consider *C*. The functor IdCat*C* yields a strict discrete subcategory of *C* and is defined by:

(Def. 20) The objects of IdCatC = the objects of C and the morphisms of IdCatC = {IdCatC = {

One can prove the following propositions:

- (52) For every strict category C such that C is discrete holds IdCatC = C.
- (53) IdCatIdCatC = IdCatC.
- (54) IdCat $\dot{\bigcirc}(o,m) = \dot{\bigcirc}(o,m)$.
- (55) $\operatorname{IdCat}[:A, B:] = [:\operatorname{IdCat}A, \operatorname{IdCat}B:].$

⁴ The propositions (36)–(38) have been removed.

⁵ The proposition (43) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [5] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [7] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [9] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received May 15, 1991

Published January 2, 2004