Natural Numbers

Robert Milewski University of Białystok

MML Identifier: NAT_2.

WWW: http://mizar.org/JFM/Vol10/nat_2.html

The articles [11], [14], [2], [5], [12], [1], [8], [10], [9], [6], [4], [13], [7], and [3] provide the notation and terminology for this paper.

1. Preliminaries

The scheme NonUniqPiFinRecExD deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

There exists a finite sequence p of elements of \mathcal{A} such that len $p = \mathcal{C}$ but $p_1 = \mathcal{B}$ or $\mathcal{C} = 0$ but for every natural number n such that $1 \le n$ and $n < \mathcal{C}$ holds $\mathcal{P}[n, p_n, p_{n+1}]$ provided the following condition is satisfied:

• Let *n* be a natural number. Suppose $1 \le n$ and n < C. Let *x* be an element of \mathcal{A} . Then there exists an element *y* of \mathcal{A} such that $\mathcal{P}[n, x, y]$.

The following propositions are true:

- (1) For every real number x holds $x < \lfloor x \rfloor + 1$.
- (2) For all real numbers x, y such that $x \ge 0$ and y > 0 holds $\frac{x}{\left[\frac{x}{x}\right]+1} < y$.

2. DIVISION AND REST OF DIVISION

One can prove the following propositions:

- (4)¹ For every natural number n holds $0 \div n = 0$.
- (5) For every non empty natural number n holds $n \div n = 1$.
- (6) For every natural number n holds $n \div 1 = n$.
- (7) For all natural numbers i, j, k, l such that $i \le j$ and $k \le j$ holds if i = (j l) + l, then k = (j l) + l.
- (8) For all natural numbers i, n such that $i \in \text{Seg } n$ holds $(n i) + 1 \in \text{Seg } n$.
- (9) For all natural numbers i, j such that j < i holds (i (j + 1)) + 1 = i j.
- (10) For all natural numbers i, j such that $i \ge j$ holds j i = 0.
- (11) For all non empty natural numbers i, j holds i j < i.

1

¹ The proposition (3) has been removed.

- (12) For all natural numbers n, k such that $k \le n$ holds $2^n = 2^k \cdot 2^{n-k}$.
- (13) For all natural numbers n, k such that $k \le n$ holds $2^k \mid 2^n$.
- (14) For all natural numbers n, k such that k > 0 and $n \div k = 0$ holds n < k.

In the sequel n, k, i denote natural numbers.

Next we state a number of propositions:

- (15) If k > 0 and $k \le n$, then $n \div k \ge 1$.
- (16) If $k \neq 0$, then $(n+k) \div k = (n \div k) + 1$.
- (17) If $k \mid n$ and $1 \le n$ and $1 \le i$ and $i \le k$, then $(n i) \div k = (n \div k) 1$.
- (18) For all natural numbers n, k such that $k \le n$ holds $2^n \div 2^k = 2^{n-k}$.
- (19) For every natural number n such that n > 0 holds $2^n \mod 2 = 0$.
- (20) For every natural number n such that n > 0 holds $n \mod 2 = 0$ iff $(n 1) \mod 2 = 1$.
- (21) For every non empty natural number n such that $n \neq 1$ holds n > 1.
- (22) For all natural numbers n, k such that $n \le k$ and k < n + n holds $k \div n = 1$.
- (23) For every natural number n holds n is even iff $n \mod 2 = 0$.
- (24) For every natural number n holds n is odd iff $n \mod 2 = 1$.
- (25) For all natural numbers n, k, t such that $1 \le t$ and $k \le n$ and $2 \cdot t \mid k$ holds $n \div t$ is even iff $(n t') \div t$ is even.
- (26) For all natural numbers n, m, k such that $n \le m$ holds $n \div k \le m \div k$.
- (27) For all natural numbers n, k such that $k \le 2 \cdot n$ holds $(k+1) \div 2 \le n$.
- (28) For every even natural number *n* holds $n \div 2 = (n+1) \div 2$.
- (29) For all natural numbers n, k, i holds $n \div k \div i = n \div k \cdot i$.

Let n be a natural number. Let us observe that n is trivial if and only if:

(Def. 1)
$$n = 0$$
 or $n = 1$.

Let us note that there exists a natural number which is non trivial and there exists a number which is non trivial and natural.

Next we state two propositions:

- (30) For every natural number k holds k is non trivial iff k is non empty and $k \neq 1$.
- (31) For every non trivial natural number k holds $k \ge 2$.

The scheme Ind from 2 concerns a unary predicate \mathcal{P} , and states that:

For every non trivial natural number k holds $\mathcal{P}[k]$

provided the following conditions are satisfied:

- P[2], and
- For every non trivial natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1. html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [8] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/power.html.
- [9] Konrad Raczkowski and Andrzej Nędzusiak. Series. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/series 1.html.
- [10] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/ JFM/Vo19/abian.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [13] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.

Received February 23, 1998

Published January 2, 2004