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The articles [4], [6], [1], [2], [5], and [3] provide the notation and terminology for this paper.
A natural number is an element ofN.
For simplicity, we use the following convention:x is a real number,k, l , m, n are natural

numbers,h, i, j are natural numbers, andX is a subset ofR.
The following proposition is true

(2)1 For everyX such that 0∈ X and for everyx such thatx∈ X holdsx+1∈ X and for every
k holdsk∈ X.

Let n, k be natural numbers. Thenn+k is a natural number.
Let n, k be natural numbers. Note thatn+k is natural.
In this article we present several logical schemes. The schemeInd concerns a unary predicate

P , and states that:
For every natural numberk holdsP [k]

provided the parameters satisfy the following conditions:
• P [0], and
• For every natural numberk such thatP [k] holdsP [k+1].

The schemeNat Indconcerns a unary predicateP , and states that:
For every natural numberk holdsP [k]

provided the following conditions are satisfied:
• P [0], and
• For every natural numberk such thatP [k] holdsP [k+1].

Let n, k be natural numbers. Thenn·k is a natural number.
Let n, k be natural numbers. Observe thatn·k is natural.
Next we state several propositions:

(18)2 0≤ i.

(19) If 0 6= i, then 0< i.

(20) If i ≤ j, theni ·h≤ j ·h.

1 The proposition (1) has been removed.
2 The propositions (3)–(17) have been removed.
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(21) 0 6= i +1.

(22) i = 0 or there existsk such thati = k+1.

(23) If i + j = 0, theni = 0 and j = 0.

One can check that there exists a natural number which is non zero.
Let m be a natural number and letn be a non zero natural number. Observe thatm+ n is non

zero andn+m is non zero.
The schemeDef by Inddeals with a natural numberA , a binary functorF yielding a natural

number, and a binary predicateP , and states that:
For everyk there existsn such thatP [k,n] and for allk, n, m such thatP [k,n] and
P [k,m] holdsn = m

provided the parameters meet the following requirement:
• For all k, n holdsP [k,n] iff k = 0 andn = A or there existm, l such thatk = m+1

andP [m, l ] andn = F (k, l).
We now state four propositions:

(26)3 For all i, j such thati ≤ j +1 holdsi ≤ j or i = j +1.

(27) If i ≤ j and j ≤ i +1, theni = j or j = i +1.

(28) For alli, j such thati ≤ j there existsk such thatj = i +k.

(29) i ≤ i + j.

Now we present three schemes. The schemeComp Indconcerns a unary predicateP , and states
that:

For everyk holdsP [k]
provided the parameters have the following property:

• For everyk such that for everyn such thatn < k holdsP [n] holdsP [k].
The schemeMin concerns a unary predicateP , and states that:

There existsk such thatP [k] and for everyn such thatP [n] holdsk≤ n
provided the following requirement is met:

• There existsk such thatP [k].
The schemeMaxdeals with a natural numberA and a unary predicateP , and states that:

There existsk such thatP [k] and for everyn such thatP [n] holdsn≤ k
provided the parameters meet the following requirements:

• For everyk such thatP [k] holdsk≤ A , and
• There existsk such thatP [k].

We now state three propositions:

(37)4 If i ≤ j, theni ≤ j +h.

(38) i < j +1 iff i ≤ j.

(40)5 If i · j = 1, theni = 1 and j = 1.

The schemeRegrconcerns a unary predicateP , and states that:
P [0]

provided the parameters meet the following conditions:
• There existsk such thatP [k], and
• For everyk such thatk 6= 0 andP [k] there existsn such thatn < k andP [n].

In the sequelt denotes a natural number.
We now state two propositions:

3 The propositions (24) and (25) have been removed.
4 The propositions (30)–(36) have been removed.
5 The proposition (39) has been removed.
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(42)6 For everym such that 0< m and for everyn there existk, t such thatn = m· k+ t and
t < m.

(43) For all natural numbersn, m, k, k1, t, t1 such thatn = m·k+ t andt < mandn = m·k1 + t1
andt1 < m holdsk = k1 andt = t1.

Let k, l be natural numbers. The functork÷ l yields a natural number and is defined by:

(Def. 1) There existst such thatk = l · (k÷ l)+ t andt < l or k÷ l = 0 andl = 0.

The functorkmodl yielding a natural number is defined by:

(Def. 2) There existst such thatk = l · t +(kmodl) andkmodl < l or kmodl = 0 andl = 0.

We now state two propositions:

(46)7 If 0 < i, then j modi < i.

(47) If 0 < i, then j = i · ( j÷ i)+( j modi).

Let k, l be natural numbers. The predicatek | l is defined as follows:

(Def. 3) There existst such thatl = k · t.
Let us note that the predicatek | l is reflexive.

We now state several propositions:

(49)8 j | i iff i = j · (i÷ j).

(51)9 If i | j and j | h, theni | h.

(52) If i | j and j | i, theni = j.

(53) i | 0 and 1| i.

(54) If 0 < j andi | j, theni ≤ j.

(55) If i | j andi | h, theni | j +h.

(56) If i | j, theni | j ·h.

(57) If i | j andi | j +h, theni | h.

(58) If i | j andi | h, theni | j modh.

Let k, n be natural numbers. The functor lcm(k,n) yields a natural number and is defined by:

(Def. 4) k | lcm(k,n) andn | lcm(k,n) and for everymsuch thatk |mandn |m holds lcm(k,n) |m.

Let us observe that the functor lcm(k,n) is commutative and idempotent.
Let k, n be natural numbers. The functor gcd(k,n) yielding a natural number is defined as

follows:

(Def. 5) gcd(k,n) | k and gcd(k,n) | n and for everym such thatm | k andm | n holdsm | gcd(k,n).

Let us observe that the functor gcd(k,n) is commutative and idempotent.
The schemeEuklidesdeals with a unary functorF yielding a natural number and natural num-

bersA , B, and states that:
There existsn such thatF (n) = gcd(A ,B) andF (n+1) = 0

provided the following conditions are satisfied:
• 0 < B andB < A ,
• F (0) = A andF (1) = B, and
• For everyn holdsF (n+2) = F (n)modF (n+1).

One can check that every natural number is ordinal.
Let us observe that there exists a subset ofR which is non empty and ordinal.

6 The proposition (41) has been removed.
7 The propositions (44) and (45) have been removed.
8 The proposition (48) has been removed.
9 The proposition (50) has been removed.
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