Three-Argument Operations and Four-Argument Operations¹

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicholas Copernicus University Toruń

Summary. The article contains the definition of three- and four- argument operations. The article introduces also a few operation related schemes: *FuncEx3D*, *TriOpEx*, *Lambda3D*, *TriOpLambda*, *FuncEx4D*, *QuaOpEx*, *Lambda4D*, *QuaOpLambda*.

MML Identifier: MULTOP_1.

WWW: http://mizar.org/JFM/Vol2/multop_1.html

The articles [3], [6], [1], [2], [5], and [4] provide the notation and terminology for this paper. Let f be a function and let a, b, c be sets. The functor f(a, b, c) yields a set and is defined as follows:

(Def. 1)
$$f(a, b, c) = f(\langle a, b, c \rangle).$$

For simplicity, we use the following convention: A, B, C, D, E are non empty sets, a is an element of A, b is an element of B, c is an element of C, d is an element of D, and X, Y, Z, S, x, y, z, S are sets.

Let us consider A, B, C, D, let f be a function from [A, B, C] into D, and let us consider A, B, C. Then A is an element of B.

Next we state three propositions:

- (2)¹ Let f_1 , f_2 be functions from [:X, Y, Z:] into D. Suppose that for all x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ holds $f_1(\langle x, y, z \rangle) = f_2(\langle x, y, z \rangle)$. Then $f_1 = f_2$.
- (3) For all functions f_1 , f_2 from [:A, B, C:] into D such that for all a, b, c holds $f_1(\langle a, b, c \rangle) = f_2(\langle a, b, c \rangle)$ holds $f_1 = f_2$.
- (4) Let f_1 , f_2 be functions from [:A, B, C:] into D. Suppose that for every element a of A and for every element b of B and for every element c of C holds $f_1(a, b, c) = f_2(a, b, c)$. Then $f_1 = f_2$.

Let A be a set. A ternary operation on A is a function from [:A, A, A:] into A.

In this article we present several logical schemes. The scheme FuncEx3D deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , \mathcal{D} and a 4-ary predicate \mathcal{P} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}, \mathcal{C}:]$ into \mathcal{D} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} holds $\mathcal{P}[x,y,z,f(\langle x,y,z\rangle)]$ provided the following requirement is met:

1

¹Supported by RPBP.III-24.C6.

¹ The proposition (1) has been removed.

• Let x be an element of \mathcal{A} , y be an element of \mathcal{B} , and z be an element of \mathcal{C} . Then there exists an element t of \mathcal{D} such that $\mathcal{P}[x,y,z,t]$.

The scheme TriOpEx deals with a non empty set \mathcal{A} and a 4-ary predicate \mathcal{P} , and states that: There exists a ternary operation o on \mathcal{A} such that for all elements a, b, c of \mathcal{A} holds $\mathcal{P}[a,b,c,o(a,b,c)]$

provided the following condition is met:

• For all elements x, y, z of \mathcal{A} there exists an element t of \mathcal{A} such that $\mathcal{P}[x,y,z,t]$.

The scheme Lambda3D deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , \mathcal{D} and a ternary functor \mathcal{F} yielding an element of \mathcal{D} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}, \mathcal{C}:]$ into \mathcal{D} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} holds $f(\langle x, y, z \rangle) = \mathcal{F}(x, y, z)$

for all values of the parameters.

The scheme TriOpLambda deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , \mathcal{D} and a ternary functor \mathcal{F} yielding an element of \mathcal{D} , and states that:

There exists a function o from $[:\mathcal{A},\mathcal{B},\mathcal{C}:]$ into \mathcal{D} such that for every element a of \mathcal{A} and for every element b of \mathcal{B} and for every element c of \mathcal{C} holds $o(a,b,c)=\mathcal{F}(a,b,c)$

for all values of the parameters.

Let f be a function and let a, b, c, d be sets. The functor f(a, b, c, d) yields a set and is defined as follows:

```
(Def. 2) f(a, b, c, d) = f(\langle a, b, c, d \rangle).
```

Let us consider A, B, C, D, E, let f be a function from [A, B, C, D] into E, and let us consider a, b, c, d. Then f(a, b, c, d) is an element of E.

We now state three propositions:

- (6)² Let f_1 , f_2 be functions from [:X, Y, Z, S:] into D. Suppose that for all x, y, z, s such that $x \in X$ and $y \in Y$ and $z \in Z$ and $s \in S$ holds $f_1(\langle x, y, z, s \rangle) = f_2(\langle x, y, z, s \rangle)$. Then $f_1 = f_2$.
- (7) For all functions f_1 , f_2 from [A, B, C, D] into E such that for all a, b, c, d holds $f_1(\langle a,b,c,d \rangle) = f_2(\langle a,b,c,d \rangle)$ holds $f_1 = f_2$.
- (8) For all functions f_1 , f_2 from [:A, B, C, D:] into E such that for all a, b, c, d holds $f_1(a, b, c, d) = f_2(a, b, c, d)$ holds $f_1 = f_2$.

Let us consider A. A quadrary operation on A is a function from [:A, A, A, A:] into A.

Now we present four schemes. The scheme *FuncEx4D* deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{E} and a 5-ary predicate \mathcal{P} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:]$ into \mathcal{E} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} holds $\mathcal{P}[x, y, z, s, f(\langle x, y, z, s \rangle)]$

provided the parameters meet the following requirement:

• Let x be an element of \mathcal{A} , y be an element of \mathcal{B} , z be an element of \mathcal{C} , and s be an element of \mathcal{D} . Then there exists an element t of \mathcal{E} such that $\mathcal{P}[x,y,z,s,t]$.

The scheme QuaOpEx deals with a non empty set \mathcal{A} and a 5-ary predicate \mathcal{P} , and states that: There exists a quadrary operation o on \mathcal{A} such that for all elements a, b, c, d of \mathcal{A} holds $\mathcal{P}[a,b,c,d,o(a,b,c,d)]$

provided the parameters meet the following condition:

• For all elements x, y, z, s of \mathcal{A} there exists an element t of \mathcal{A} such that $\mathcal{P}[x,y,z,s,t]$.

The scheme Lambda4D deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{E} and a 4-ary functor \mathcal{F} yielding an element of \mathcal{E} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:]$ into \mathcal{E} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} and for every element z of \mathcal{C} and for every element s of \mathcal{D} holds $f(\langle x,y,z,s\rangle) = \mathcal{F}(x,y,z,s)$

² The proposition (5) has been removed.

for all values of the parameters.

The scheme QuaOpLambda deals with a non empty set $\mathcal A$ and a 4-ary functor $\mathcal F$ yielding an element of $\mathcal A$, and states that:

There exists a quadrary operation o on $\mathcal A$ such that for all elements $a,\,b,\,c,\,d$ of $\mathcal A$ holds $o(a,b,c,d)=\mathcal F(a,b,c,d)$

for all values of the parameters.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_
- [3] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain_l.html.
- [5] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart_1.html.
- $[6] \begin{tabular}{ll} Zinaida Trybulec. Properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. | the properties of subsets. {\it Journa$

Received October 2, 1990

Published January 2, 2004