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Summary. The aim of the article is to check the compatibility of the homomorphism
of universal algebras introduced ir [9] and the corresponding concept for many sorted algebras
introduced in[[10].
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The articles[[14],[18],[[10],[14],.12001,[[6],L15],[[15],[T1], 171, (20 ],[02], 18], 11R], (18], I1l1,[1®],[[10],
[13], and [16] provide the notation and terminology for this paper.

For simplicity, we follow the rulest;, U,, U3 are universal algebras,is a natural numbe#i
is a non empty set, artdis a function fromlJ; into Us.

Next we state four propositions:

(1) For all functionsf, g and for every se€ such that rnd C C holds(g/C) - f =g- f.
(2) For every set and for every subsé of | holdsC* C I*.

(3) For every functionf and for every se€ such thatf is function yielding holdsf [C is
function yielding.

(4) For every set and for every subsél of | and for every many sorted skt indexed byl
holds(M[C)# = M#|C*.

Let us consideA, n and leta be an element oA. Thenn — ais a finite sequence of elements
of A.
Let S, S be non empty many sorted signatures. The pred8atés is defined by the conditions
(Def. 1).
(Def. 1)(i) The carrier o5 C the carrier ofS,
(i) the operation symbols d C the operation symbols &,
(i)  (the arity of S)|(the operation symbols &) = the arity ofS, and
(iv)  (the result sort o) [(the operation symbols &) = the result sort of.

Let us note that the predicaBx< S is reflexive.
One can prove the following propositions:
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(5) For all non empty many sorted signatu®sS, S’ such thatS< S andS < S’ holds
S<9g.

(6) For all strict non empty many sorted signatu@&sS such thatS< S andS < S holds
S=38.

(7) Letgbe afunctiona be an element oA\, andk be a natural number. If £ k andk < n,
then(a-—g)((n+— a)) = .

(8) Letl be a setlp be a subset df, A, B be many sorted sets indexed Iy be a many sorted
function fromA into B, andAg, Bg be many sorted sets indexed lgy Supposédy = Aflp and
Bo = BJlg. ThenF[lg is a many sorted function fromy into Bp.

Let S S be strict non void non empty many sorted signatures and tet a non-empty strict
algebra ovesS. Let us assume th&< S. The functor(AoverS) yields a non-empty strict algebra
overSand is defined by the conditions (Def. 2).

(Def. 2)(i) The sorts of AoverS) = (the sorts ofd) [(the carrier ofS), and
(i) the characteristics ofAoverS) = (the characteristics &%) [(the operation symbols @&).

One can prove the following propositions:

(9) For every strict non void non empty many sorted signaBaed for every non-empty strict
algebraA overSholdsA = (AoverS).

(10) For alluy, U, such thatJ; andU; are similar holds MSSigiy;) = MSSignU,).

Let U1, Uz be universal algebras and letbe a function fronlJ; into U,. Let us assume that
MSSignU;) = MSSignUz). The functor MSAIgh) yields a many sorted function from MSAd; )
into (MSAIg(U,) over MSSigriU;)) and is defined as follows:

(Def. 3) MSAIg(h) ={0} — h.
We now state a number of propositions:

(11) Let givenU;, Uy, h. SupposdJ; andU, are similar. Leto be an operation symbol of
MSSignU1). Then(MSAIg(h))(the result sort 0b) = h.

(12) For every operation symbolof MSSignU;) holds Derfo, MSAIg(U;)) = (the character-
istic of U1)(0).

(13) For every operation symbolof MSSignU1) holds Derfjo, MSAIg(U;)) is an operation of
Us.

(14) For every operation symbolof MSSignU1) holds every element of Args, MSAIg(U1))
is a finite sequence of elements of the carriddgf

(15) Let givenU;, Uy, h. SupposdJ; andU, are similar. Leto be an operation symbol of
MSSign(U;) andy be an element of Ards, MSAIg(U4)). Then MSAIgh)#y =h-y.

(16) If his a homomorphism dfl; into Uy, then MSAIgh) is a homomorphism of MSAId;)
into (MSAIlg(U;) overMSSigriUs)).

(17) If Uy andU; are similar, then MSAI¢h) is a many sorted set indexed bg}.

(18) If his an epimorphism ofJ; ontoU,, then MSAIgh) is an epimorphism of MSAI@J;)
onto (MSAIg(Uz) over MSSigriUs)).

(19) If his a monomorphism dfl; into Uy, then MSAIgh) is a monomorphism of MSAId;)
into (MSAIlg(U;) overMSSigriUs)).

(20) If his an isomorphism df); andU,, then MSAIgh) is an isomorphism of MSAI@J;) and
(MSAIg(U) over MSSigriUs)).
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(21) Let givenUs, Uy, h. SupposéJ; andU, are similar. Suppose MSA(b) is a homomor-

phism of MSAIgU;) into (MSAIg(U,) over MSSigriUs)). Thenhis a homomorphism dfi;
into Us.

(22) LetgivenUs, U, h. Supposé&J; andU, are similar. Suppose MSA(D) is an epimorphism

of MSAIg(U;) onto (MSAIg(U,) overMSSigriU1)). Thenh is an epimorphism ofJ; onto
Us.

(23) Let givenUs, Uy, h. SupposédJ; andU; are similar. Suppose MSA(b) is a monomor-

phism of MSAIgUs ) into (MSAIg(U,) over MSSigriUs)). Thenh is a monomorphism df;
into U,.

(24) LetgivenUs, Uy, h. Supposé); andU, are similar. Suppose MSA(f) is an isomorphism

of MSAIg(U1) and(MSAIg(Uz) overMSSigriU;)). Thenh is an isomorphism dfl; andUs.

(25) MSAIg(idthe carrier oﬂJ1> = idthe sorts ofMSAIg(Uy) -

(26) Let givenU;, Uy, Us. SupposédJ; andU, are similar andJ, andUsz are similar. Leth;
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be a function fromU; into U, andhy be a function fromU; into Uz. Then MSAIghy) o
MSAIg(hy) = MSAlg(h2 - hy).
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