The Correspondence Between Homomorphisms of Universal Algebra & Many Sorted Algebra

Adam Grabowski Warsaw University Białystok

Summary. The aim of the article is to check the compatibility of the homomorphism of universal algebras introduced in [9] and the corresponding concept for many sorted algebras introduced in [10].

MML Identifier: MSUHOM_1.

WWW: http://mizar.org/JFM/Vol6/msuhom_1.html

The articles [14], [18], [19], [4], [20], [6], [5], [15], [1], [7], [11], [2], [3], [12], [8], [17], [9], [10], [13], and [16] provide the notation and terminology for this paper.

For simplicity, we follow the rules: U_1 , U_2 , U_3 are universal algebras, n is a natural number, A is a non empty set, and h is a function from U_1 into U_2 .

Next we state four propositions:

- (1) For all functions f, g and for every set C such that rng $f \subseteq C$ holds $(g \upharpoonright C) \cdot f = g \cdot f$.
- (2) For every set *I* and for every subset *C* of *I* holds $C^* \subseteq I^*$.
- (3) For every function f and for every set C such that f is function yielding holds $f \upharpoonright C$ is function yielding.
- (4) For every set *I* and for every subset *C* of *I* and for every many sorted set *M* indexed by *I* holds $(M \upharpoonright C)^\# = M^\# \upharpoonright C^*$.

Let us consider A, n and let a be an element of A. Then $n \mapsto a$ is a finite sequence of elements of A.

Let S, S' be non empty many sorted signatures. The predicate $S \le S'$ is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of $S \subseteq$ the carrier of S',

- (ii) the operation symbols of $S \subseteq$ the operation symbols of S',
- (iii) (the arity of S') [(the operation symbols of S) = the arity of S, and
- (iv) (the result sort of S') \uparrow (the operation symbols of S) = the result sort of S.

Let us note that the predicate $S \leq S'$ is reflexive.

One can prove the following propositions:

- (5) For all non empty many sorted signatures S, S', S'' such that $S \leq S'$ and $S' \leq S''$ holds S < S''.
- (6) For all strict non empty many sorted signatures S, S' such that $S \leq S'$ and $S' \leq S$ holds S = S'.
- (7) Let g be a function, a be an element of A, and k be a natural number. If $1 \le k$ and $k \le n$, then $(a \mapsto g)((n \mapsto a)_k) = g$.
- (8) Let I be a set, I_0 be a subset of I, A, B be many sorted sets indexed by I, F be a many sorted function from A into B, and A_0 , B_0 be many sorted sets indexed by I_0 . Suppose $A_0 = A \upharpoonright I_0$ and $B_0 = B \upharpoonright I_0$. Then $F \upharpoonright I_0$ is a many sorted function from A_0 into B_0 .
- Let S, S' be strict non void non empty many sorted signatures and let A be a non-empty strict algebra over S'. Let us assume that $S \le S'$. The functor (A over S) yields a non-empty strict algebra over S and is defined by the conditions (Def. 2).
- (Def. 2)(i) The sorts of $(A \text{ over } S) = (\text{the sorts of } A) \upharpoonright (\text{the carrier of } S)$, and
 - (ii) the characteristics of $(A \text{ over } S) = (\text{the characteristics of } A) \upharpoonright (\text{the operation symbols of } S)$. One can prove the following propositions:
 - (9) For every strict non void non empty many sorted signature S and for every non-empty strict algebra A over S holds A = (A over S).
 - (10) For all U_1 , U_2 such that U_1 and U_2 are similar holds $MSSign(U_1) = MSSign(U_2)$.

Let U_1 , U_2 be universal algebras and let h be a function from U_1 into U_2 . Let us assume that $MSSign(U_1) = MSSign(U_2)$. The functor MSAlg(h) yields a many sorted function from $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$ and is defined as follows:

(Def. 3) $MSAlg(h) = \{0\} \longmapsto h$.

We now state a number of propositions:

- (11) Let given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Let o be an operation symbol of $MSSign(U_1)$. Then (MSAlg(h)) (the result sort of o) = h.
- (12) For every operation symbol o of $MSSign(U_1)$ holds $Den(o, MSAlg(U_1)) =$ (the characteristic of $U_1)(o)$.
- (13) For every operation symbol o of $MSSign(U_1)$ holds $Den(o, MSAlg(U_1))$ is an operation of U_1 .
- (14) For every operation symbol o of $MSSign(U_1)$ holds every element of $Args(o, MSAlg(U_1))$ is a finite sequence of elements of the carrier of U_1 .
- (15) Let given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Let o be an operation symbol of $MSSign(U_1)$ and y be an element of $Args(o, MSAlg(U_1))$. Then $MSAlg(h)\#y = h \cdot y$.
- (16) If h is a homomorphism of U_1 into U_2 , then MSAlg(h) is a homomorphism of $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$.
- (17) If U_1 and U_2 are similar, then MSAlg(h) is a many sorted set indexed by $\{0\}$.
- (18) If h is an epimorphism of U_1 onto U_2 , then MSAlg(h) is an epimorphism of $MSAlg(U_1)$ onto $(MSAlg(U_2) \text{ over } MSSign(U_1))$.
- (19) If h is a monomorphism of U_1 into U_2 , then MSAlg(h) is a monomorphism of $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$.
- (20) If h is an isomorphism of U_1 and U_2 , then MSAlg(h) is an isomorphism of $MSAlg(U_1)$ and $(MSAlg(U_2) \text{ over } MSSign(U_1))$.

- (21) Let given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is a homomorphism of $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$. Then h is a homomorphism of U_1 into U_2 .
- (22) Let given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is an epimorphism of $MSAlg(U_1)$ onto $(MSAlg(U_2) \text{ over } MSSign(U_1))$. Then h is an epimorphism of U_1 onto U_2 .
- (23) Let given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is a monomorphism of $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$. Then h is a monomorphism of U_1 into U_2 .
- (24) Let given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is an isomorphism of $MSAlg(U_1)$ and $(MSAlg(U_2) \text{ over } MSSign(U_1))$. Then h is an isomorphism of U_1 and U_2 .
- (25) $MSAlg(id_{the \ carrier \ of \ U_1}) = id_{the \ sorts \ of \ MSAlg(U_1)}$.
- (26) Let given U_1 , U_2 , U_3 . Suppose U_1 and U_2 are similar and U_2 and U_3 are similar. Let h_1 be a function from U_1 into U_2 and h_2 be a function from U_2 into U_3 . Then $MSAlg(h_2) \circ MSAlg(h_1) = MSAlg(h_2 \cdot h_1)$.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_l.html.
- [3] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/unialg_2.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [7] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [9] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/alg_1.html.
- [10] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [11] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/unialg_1.html.
- [12] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralq_1.html.
- [13] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [15] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [16] Andrzej Trybulec. Many sorted algebras. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vo16/msualg_1.
- [17] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[20] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received December 13, 1994

Published January 2, 2004