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the notation and terminology for this paper.

1. PRELIMINARIES

In this papera, I denote sets andSdenotes a non empty non void many sorted signature.
The schemeMSSExDdeals with a non empty setA and a binary predicateP , and states that:

There exists a many sorted setf indexed byA such that for every elementi of A
holdsP [i, f (i)]

provided the following condition is met:
• For every elementi of A there exists a setj such thatP [i, j].

Let I be a set and letM be a many sorted set indexed byI . One can check that there exists an
element of Bool(M) which is locally-finite.

Let I be a set and letM be a non-empty many sorted set indexed byI . Note that there exists a
many sorted subset indexed byM which is non-empty and locally-finite.

Let Sbe a non empty non void many sorted signature, letA be a non-empty algebra overS, and
let o be an operation symbol ofS. Note that every element of Args(o,A) is finite sequence-like.

Let S be a non void non empty many sorted signature, letI be a set, lets be a sort symbol of
S, and letF be an algebra family ofI over S. Observe that every element of(SORTS(F))(s) is
function-like and relation-like.

Let Sbe a non void non empty many sorted signature and letX be a non-empty many sorted set
indexed by the carrier ofS. One can verify that FreeGenerator(X) is free and non-empty.

Let Sbe a non void non empty many sorted signature and letX be a non-empty many sorted set
indexed by the carrier ofS. Observe that Free(X) is free.

Let Sbe a non empty non void many sorted signature and letA, B be non-empty algebras over
S. Note that[:A, B:] is non-empty.

The following propositions are true:
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(1) For all setsX, Y and for every functionf such thata ∈ dom f and f (a) ∈ [:X, Y :] holds
f (a) = 〈〈pr1( f )(a), pr2( f )(a)〉〉.

(2) For every non empty setX and for every setY and for every functionf from X into {Y}
holds rngf = {Y}.

(3) For every non empty finite setA there exists a functionf from N into A such that rngf = A.

(4) Classes(∇I )⊆ {I}.

(5) For every non empty setI holds Classes(∇I ) = {I}.

(6) There exists a many sorted setA indexed byI such that{A}= I 7−→ {a}.

(7) For every many sorted setA indexed byI there exists a non-empty many sorted setB
indexed byI such thatA⊆ B.

(8) Let M be a non-empty many sorted set indexed byI andB be a locally-finite many sorted
subset indexed byM. Then there exists a non-empty locally-finite many sorted subsetC
indexed byM such thatB⊆C.

(9) For all many sorted setsA, B indexed byI and for all many sorted functionsF , G from A
into {B} holdsF = G.

(10) For every non-empty many sorted setA indexed byI and for every many sorted setB
indexed byI holds every many sorted function fromA into {B} is onto.

(11) LetA be a many sorted set indexed byI andB be a non-empty many sorted set indexed by
I . Then every many sorted function from{A} into B is “1-1”.

(12) For every non-empty many sorted setX indexed by the carrier ofS holds Reverse(X) is
“1-1”.

(13) For every non-empty locally-finite many sorted setA indexed byI holds there exists a many
sorted function fromI 7−→ N into A which is onto.

(14) Let S be a non empty many sorted signature,A be a non-empty algebra overS, and f , g
be elements of∏ (the sorts ofA). Suppose that for every seti holds (proj(the sorts ofA,
i))( f ) = (proj(the sorts ofA, i))(g). Then f = g.

(15) LetI be a non empty set,s be an element ofS, A be an algebra family ofI overS, and f , g
be elements of∏Carrier(A,s). If for every elementa of I holds(proj(Carrier(A,s),a))( f ) =
(proj(Carrier(A,s),a))(g), then f = g.

(16) Let A, B be non-empty algebras overS, C be a non-empty subalgebra ofA, andh1 be a
many sorted function fromB into C. Supposeh1 is a homomorphism ofB into C. Let h2 be a
many sorted function fromB into A. If h1 = h2, thenh2 is a homomorphism ofB into A.

(17) LetA, B be non-empty algebras overSandF be a many sorted function fromA into B. If
F is a monomorphism ofA into B, thenA and ImF are isomorphic.

(18) Let A, B be non-empty algebras overS andF be a many sorted function fromA into B.
SupposeF is onto. Leto be an operation symbol ofS andx be an element of Args(o,B).
Then there exists an elementy of Args(o,A) such thatF#y = x.

(19) LetA be a non-empty algebra overS, o be an operation symbol ofS, andx be an element
of Args(o,A). Then(Den(o,A))(x) ∈ (the sorts ofA)(the result sort ofo).

(20) Let A, B, C be non-empty algebras overS, F1 be a many sorted function fromA into B,
andF2 be a many sorted function fromA into C. SupposeF1 is an epimorphism ofA ontoB
andF2 is a homomorphism ofA into C. Let G be a many sorted function fromB into C. If
G◦F1 = F2, thenG is a homomorphism ofB into C.
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In the sequelA, M denote many sorted sets indexed byI andB, C denote non-empty many sorted
sets indexed byI .

Let I be a set, letA be a many sorted set indexed byI , let B, C be non-empty many sorted sets
indexed byI , and letF be a many sorted function fromA into [[B,C]]. The functor Mpr1(F) yielding
a many sorted function fromA into B is defined by:

(Def. 1) For every seti such thati ∈ I holds(Mpr1(F))(i) = pr1(F(i)).

The functor Mpr2(F) yielding a many sorted function fromA into C is defined as follows:

(Def. 2) For every seti such thati ∈ I holds(Mpr2(F))(i) = pr2(F(i)).

We now state four propositions:

(21) For every many sorted functionF from A into [[I 7−→ {a}, I 7−→ {a}]] holds Mpr1(F) =
Mpr2(F).

(22) For every many sorted functionF from A into [[B,C]] such thatF is onto holds Mpr1(F) is
onto.

(23) For every many sorted functionF from A into [[B,C]] such thatF is onto holds Mpr2(F) is
onto.

(24) LetF be a many sorted function fromA into [[B,C]]. If M ∈ domκ F(κ), then for every set
i such thati ∈ I holds(F " M)(i) = 〈〈((Mpr1(F)) " M)(i), ((Mpr2(F)) " M)(i)〉〉.

2. ON THE TRIVIAL MANY SORTED ALGEBRAS

Let S be a non empty many sorted signature. Observe that the sorts of the trivial algebra ofS is
locally-finite and non-empty.

Let Sbe a non empty many sorted signature. Observe that the trivial algebra ofSis locally-finite
and non-empty.

We now state three propositions:

(25) LetA be a non-empty algebra overS, F be a many sorted function fromA into the trivial
algebra ofS, o be an operation symbol ofS, andx be an element of Args(o,A). ThenF(the
result sort ofo)((Den(o,A))(x)) = 0 and(Den(o, the trivial algebra ofS))(F#x) = 0.

(26) For every non-empty algebraA over S holds every many sorted function fromA into the
trivial algebra ofS is an epimorphism ofA onto the trivial algebra ofS.

(27) LetA be an algebra overS. Given a many sorted setX indexed by the carrier ofSsuch that
the sorts ofA = {X}. ThenA and the trivial algebra ofSare isomorphic.

3. ON THE MANY SORTED CONGRUENCES

The following propositions are true:

(28) LetA be a non-empty algebra overS. Then every congruence ofA is a many sorted subset
indexed by[[the sorts ofA, the sorts ofA]].

(29) Let A be a non-empty algebra overS, R be a subset of CongrLatt(A), andF be a family
of many sorted subsets indexed by[[the sorts ofA, the sorts ofA]]. If R= F, then

⋂
|:F :| is a

congruence ofA.

(30) LetA be a non-empty algebra overSandC be a congruence ofA. SupposeC = [[the sorts
of A, the sorts ofA]]. Then the sorts ofA/C = {the sorts ofA}.

(31) LetA, B be non-empty algebras overSandF be a many sorted function fromA into B. If F
is a homomorphism ofA intoB, then MSHomQuot(F)◦MSNatHom(A,Congruence(F)) = F.
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(32) LetA be a non-empty algebra overS, C be a congruence ofA, s be a sort symbol ofS, and
a be an element of (the sorts ofA/C)(s). Then there exists an elementx of (the sorts ofA)(s)
such thata = [x]C.

(33) LetA be an algebra overSandC1, C2 be equivalence many sorted relations indexed byA.
SupposeC1 ⊆C2. Let i be an element ofSandx, y be elements of (the sorts ofA)(i). If 〈〈x,
y〉〉 ∈C1(i), then[x](C1) ⊆ [y](C2) and ifA is non-empty, then[y](C1) ⊆ [x](C2).

(34) Let A be a non-empty algebra overS, C be a congruence ofA, s be a sort sym-
bol of S, and x, y be elements of (the sorts ofA)(s). Then (MSNatHom(A,C))(s)(x) =
(MSNatHom(A,C))(s)(y) if and only if 〈〈x, y〉〉 ∈C(s).

(35) LetA be a non-empty algebra overS, C1, C2 be congruences ofA, andG be a many sorted
function fromA/C1 into A/C2. Suppose that for every elementi of Sand for every elementx
of (the sorts ofA/C1)(i) and for every elementx1 of (the sorts ofA)(i) such thatx = [x1](C1)
holdsG(i)(x) = [x1](C2). ThenG◦MSNatHom(A,C1) = MSNatHom(A,C2).

(36) LetA be a non-empty algebra overS, C1, C2 be congruences ofA, andG be a many sorted
function fromA/C1 into A/C2. Suppose that for every elementi of Sand for every elementx
of (the sorts ofA/C1)(i) and for every elementx1 of (the sorts ofA)(i) such thatx = [x1](C1)
holdsG(i)(x) = [x1](C2). ThenG is an epimorphism ofA/C1 ontoA/C2.

(37) Let A, B be non-empty algebras overS and F be a many sorted function fromA into
B. SupposeF is a homomorphism ofA into B. Let C1 be a congruence ofA. Suppose
C1 ⊆Congruence(F). Then there exists a many sorted functionH from A/C1 into B such that
H is a homomorphism ofA/C1 into B andF = H ◦MSNatHom(A,C1).
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