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The articles [16], [8], [19], [14], [20], [21], [1], [5], [7], [6], [9], [4], [2], [15], [22], [3], [17], [11],
[18], [10], [12], and [13] provide the notation and terminology for this paper.

1. MORE ON THELATTICE OF EQUIVALENCE RELATIONS

For simplicity, we adopt the following convention:I denotes a non empty set,M denotes a many
sorted set indexed byI , Y, x, y denote sets,k denotes a natural number,p denotes a finite sequence,
Sdenotes a non void non empty many sorted signature, andA denotes a non-empty algebra overS.

The following proposition is true

(1) For every natural numbern and for every finite sequencep holds 1≤ n andn < lenp iff
n∈ domp andn+1∈ domp.

The schemeNonUniqSeqExdeals with a natural numberA and a binary predicateP , and states
that:

There existsp such that domp = SegA and for everyk such thatk ∈ SegA holds
P [k, p(k)]

provided the following condition is satisfied:
• For everyk such thatk∈ SegA there existsx such thatP [k,x].

Next we state the proposition

(2) Let a, b be elements of EqRelLatt(Y) andA, B be equivalence relations ofY. If a = A and
b = B, thenav b iff A⊆ B.

Let us considerY. Note that EqRelLatt(Y) is bounded.
Next we state three propositions:

(3) ⊥EqRelLatt(Y) = idY.

(4) >EqRelLatt(Y) = ∇Y.

(5) EqRelLatt(Y) is complete.

Let us considerY. Note that EqRelLatt(Y) is complete.
Next we state several propositions:
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(6) For every setY and for every subsetX of EqRelLatt(Y) holds
⋃

X is a binary relation onY.

(7) For every setY and for every subsetX of EqRelLatt(Y) holds
⋃

X ⊆
⊔

X.

(8) For every setY and for every subsetX of EqRelLatt(Y) and for every binary relationR on
Y such thatR=

⋃
X holds

⊔
X = EqCl(R).

(9) For every setY and for every subsetX of EqRelLatt(Y) and for every binary relationR
such thatR=

⋃
X holdsR= R̀ .

(10) LetY be a set andX be a subset of EqRelLatt(Y). Supposex ∈ Y andy ∈ Y. Then 〈〈x,
y〉〉 ∈

⊔
X if and only if there exists a finite sequencef such that 1≤ len f and x = f (1)

andy = f (len f ) and for every natural numberi such that 1≤ i and i < len f holds 〈〈 f (i),
f (i +1)〉〉 ∈

⋃
X.

2. LATTICE OF CONGRUENCES INMANY SORTED ALGEBRA AS SUBLATTICE OF LATTICE

OF MANY SORTED EQUIVALENCE RELATIONS INHERITED SUP’ S AND INF’ S

One can prove the following proposition

(11) For every subsetB of CongrLatt(A) holdsd−eEqRelLatt(the sorts ofA)B is a congruence ofA.

Let us considerS, Aand letE be an element of EqRelLatt(the sorts ofA). The functor CongrCl(E)
yields a congruence ofA and is defined by:

(Def. 1) CongrCl(E) = d−eEqRelLatt(the sorts ofA){x;x ranges over elements of EqRelLatt(the sorts of
A): x is a congruence ofA ∧ E v x}.

Let us considerS, A and letX be a subset of EqRelLatt(the sorts ofA). The functor CongrCl(X)
yielding a congruence ofA is defined as follows:

(Def. 2) CongrCl(X) = d−eEqRelLatt(the sorts ofA){x;x ranges over elements of EqRelLatt(the sorts of
A): x is a congruence ofA ∧ X v x}.

One can prove the following propositions:

(12) For every elementC of EqRelLatt(the sorts ofA) such thatC is a congruence ofA holds
CongrCl(C) = C.

(13) For every subsetX of EqRelLatt(the sorts ofA) holds CongrCl(
⊔

EqRelLatt(the sorts ofA) X) =
CongrCl(X).

(14) Let B1, B2 be subsets of CongrLatt(A) and C1, C2 be congruences ofA. Sup-
pose C1 =

⊔
EqRelLatt(the sorts ofA) B1 and C2 =

⊔
EqRelLatt(the sorts ofA) B2. Then C1 tC2 =⊔

EqRelLatt(the sorts ofA)(B1∪B2).

(15) LetX be a subset of CongrLatt(A). Then
⊔

EqRelLatt(the sorts ofA) X =
⊔

EqRelLatt(the sorts ofA){
⊔

EqRelLatt(the sorts ofA) X0;X0

ranges over subsets of EqRelLatt(the sorts ofA): X0 is a finite subset ofX}.

(16) Let i be an element ofI ande be an equivalence relation ofM(i). Then there exists an
equivalence relationE of M such thatE(i) = e and for every elementj of I such thatj 6= i
holdsE( j) = ∇M( j).

Let I be a non empty set, letM be a many sorted set indexed byI , let i be an element ofI , and let
X be a subset of EqRelLatt(M). ThenπiX is a subset of EqRelLatt(M(i)) and it can be characterized
by the condition:

(Def. 3) x∈ πiX iff there exists an equivalence relationE1 of M such thatx = E1(i) andE1 ∈ X.

We introduce EqRelSet(X, i) as a synonym ofπiX.
The following four propositions are true:
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(17) Leti be an element ofS, X be a subset of EqRelLatt(the sorts ofA), andB be an equivalence
relation of the sorts ofA. If B =

⊔
X, thenB(i) =

⊔
EqRelLatt((the sorts ofA)(i)) EqRelSet(X, i).

(18) For every subsetX of CongrLatt(A) holds
⊔

EqRelLatt(the sorts ofA) X is a congruence ofA.

(19) CongrLatt(A) is d−e-inheriting.

(20) CongrLatt(A) is
⊔

-inheriting.

Let us considerS, A. Note that CongrLatt(A) is d−e-inheriting and
⊔

-inheriting.
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