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The articles([15],[[8],[[13],[[14],[[20],[[21],[11],[15],[[7],.16],1[9], 4], [[2], [15], [22], [[3], [[17], [[11],
[18], [10], [12], and [18] provide the notation and terminology for this paper.

1. MORE ON THELATTICE OF EQUIVALENCE RELATIONS

For simplicity, we adopt the following conventioh:denotes a hon empty séf] denotes a many

sorted set indexed by Y, X, y denote setk denotes a natural numbgrdenotes a finite sequence,

Sdenotes a non void non empty many sorted signatureAatehotes a non-empty algebra o®er
The following proposition is true

(1) For every natural numberand for every finite sequengeholds 1< n andn < lenp iff
n e dompandn-+1 € domp.

The schem&lonUnigSegExeals with a natural numbet and a binary predicat®, and states
that:
There existg such that donp = Seg4 and for everyk such thak € Seg4 holds
Pk, p(k)]
provided the following condition is satisfied:
e For everyk such thak € Seg4 there existx such thatP[k, x].
Next we state the proposition

(2) Leta, b be elements of EqRelL4¥) andA, B be equivalence relations ¥t If a= A and
b=B, thenaC biff ACB.

Let us consideY. Note that EqRelLafY) is bounded.
Next we state three propositions:

()  LegrelLatty) = idy.
(4) TegrelLatty) = Oy-
(5) EqgRelLattY) is complete.

Let us consideY. Note that EqRelLatY) is complete.
Next we state several propositions:
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(6) Forevery seY and for every subset of EqRelLattY) holds|J X is a binary relation oiY.
(7) Forevery seY and for every subset of EqRelLatfY) holds(JX C || X.

(8) Forevery seY and for every subset of EqRelLattY) and for every binary relatioR on
Y such thaR = |J X holds| | X = EqCI(R).

(9) For every se¥ and for every subseX of EqRelLattY) and for every binary relatioR
such thaR= X holdsR=R~.

(10) LetY be a set anK be a subset of EqRelL&¥). Supposex €Y andy € Y. Then (X,
y) € LUX if and only if there exists a finite sequendéesuch that 1< lenf andx = f(1)
andy = f(lenf) and for every natural numbersuch that 1< i andi < lenf holds {f(i),
f(i+1) eUX.

2. LATTICE OF CONGRUENCES INMANY SORTED ALGEBRA AS SUBLATTICE OF LATTICE
OF MANY SORTED EQUIVALENCE RELATIONS INHERITED SUP’'S AND INF’S

One can prove the following proposition
(11) For every subsd of CongrLattA) holds[ JeqreiLattthe sorts ofa) B iS @ congruence ok.

Let us conside$, Aand letE be an element of EqRelL&the sorts of). The functor CongrGE)
yields a congruence & and is defined by:

(Def. 1) CongrClE) = [ leqrelLattine sorts ofa) 1% X ranges over elements of EqRell(#te sorts of
A): xis a congruence ok A E C x}.

Let us consideB, A and letX be a subset of EqRelLéthe sorts o). The functor CongrGX)
yielding a congruence & is defined as follows:

(Def. 2) CongrC(X) = [ |eqrelLattthe sorts ota){X: X ranges over elements of EqRell(#tie sorts of
A): xis a congruence oA A X C x}.

One can prove the following propositions:

(12) For every elemer€® of EqRelLat{the sorts ofA) such thalC is a congruence oh holds
CongrCIC) =C.

(13) For every subset of EqRelLat{the sorts ofA) holds CongrQll|ggreiLattthe sorts ofa) X) =
CongrCIX).

(14) Let B;, By be subsets of CongrLaf) and C;, C, be congruences oA. Sup-
pose C; = UEqReILat(the sorts ofA) B1 and C; = |_|EqReILat(the sorts ofA) B2. Then C,UC, =
|_|EqRelLat(the sorts ofA) (Bl U BZ)~

(15) LetX be a subset of Congfl-féﬁ)- ThenUEqReILat(the sorts ofA) X= UEqReILat(the sorts ofA) {UEqReILat(the sorts ofA) Xo; Xc
ranges over subsets of EqRell(#tie sorts ofd): Xp is a finite subset oK }.

(16) Leti be an element of ande be an equivalence relation M(i). Then there exists an
equivalence relatiofe of M such thate(i) = e and for every elemeni of | such thatj # i

Letl be a non empty set, & be a many sorted set indexedlhyeti be an element df, and let
X be a subset of EqRelL&M). Thent; X is a subset of EqRelLd¥(i)) and it can be characterized
by the condition:

(Def. 3) x e mX iff there exists an equivalence relati&q of M such thax = E; (i) andE; € X.

We introduce EqRelSEX,i) as a synonym ofg X.
The following four propositions are true:
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(17) Leti be an element d§, X be a subset of EqRelL#the sorts o), andB be an equivalence
relation of the sorts oA. If B=[]X, thenB(i) = | JgqrelLat(the sorts oi)(i)) EAREISEX,i).

(18) For every subset of CongrLattA) holds| |eqrelLattihe sorts ofa) X IS @ congruence ok.
(19) CongrLattA) is [ J-inheriting.
(20) CongrLattA) is | |-inheriting.

Let us consideB, A. Note that CongrLaf®) is [ |-inheriting and_|-inheriting.
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