More on the Lattice of Many Sorted Equivalence Relations

Robert Milewski Warsaw University Białystok

MML Identifier: MSUALG_7.
WWW: http://mizar.org/JFM/Vol8/msualg_7.html

The articles [18], [6], [20], [21], [3], [5], [4], [17], [16], [19], [22], [1], [8], [7], [13], [2], [11], [12], [14], [15], [9], and [10] provide the notation and terminology for this paper.

1. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS IS COMPLETE

For simplicity, we follow the rules: I denotes a non empty set, M denotes a many sorted set indexed by I, x denotes a set, and r_1 , r_2 denote real numbers.

Next we state three propositions:

- (1) For every set X holds $x \in$ the carrier of EqRelLatt(X) iff x is an equivalence relation of X.
- (2) id_M is an equivalence relation of M.
- (3) [[M,M]] is an equivalence relation of M.

Let us consider I, M. Observe that EqRelLatt(M) is bounded. The following propositions are true:

- (4) $\perp_{\text{EqRelLatt}(M)} = \text{id}_M.$
- (5) $\top_{\operatorname{EqRelLatt}(M)} = \llbracket M, M \rrbracket.$
- (6) Every subset of EqRelLatt(M) is a family of many sorted subsets indexed by [M, M].
- (7) Let *a*, *b* be elements of EqRelLatt(*M*) and *A*, *B* be equivalence relations of *M*. If a = A and b = B, then $a \sqsubseteq b$ iff $A \subseteq B$.
- (8) Let *X* be a subset of EqRelLatt(*M*) and *X*₁ be a family of many sorted subsets indexed by $[\![M,M]\!]$. Suppose $X_1 = X$. Let *a*, *b* be equivalence relations of *M*. If $a = \bigcap |:X_1:|$ and $b \in X$, then $a \subseteq b$.
- (9) Let X be a subset of EqRelLatt(M) and X_1 be a family of many sorted subsets indexed by [[M,M]]. If $X_1 = X$ and X is non empty, then $\bigcap |:X_1:|$ is an equivalence relation of M.

Let L be a non empty lattice structure. Let us observe that L is complete if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let *X* be a subset of *L*. Then there exists an element *a* of *L* such that $X \sqsubseteq a$ and for every element *b* of *L* such that $X \sqsubseteq b$ holds $a \sqsubseteq b$.

Next we state the proposition

(10) EqRelLatt(M) is complete.

Let us consider I, M. One can check that EqRelLatt(M) is complete. The following proposition is true

(11) Let X be a subset of EqRelLatt(M) and X_1 be a family of many sorted subsets indexed by [[M,M]]. Suppose $X_1 = X$ and X is non empty. Let a, b be equivalence relations of M. If $a = \bigcap |:X_1:|$ and $b = \bigcap_{\text{EqRelLatt}(M)} X$, then a = b.

2. SUBLATTICES INHERITING SUP'S AND INF'S

Let *L* be a lattice and let I_1 be a sublattice of *L*. We say that I_1 is \square -inheriting if and only if:

(Def. 2) For every subset X of I_1 holds $\square_L X \in$ the carrier of I_1 .

We say that I_1 is \sqcup -inheriting if and only if:

(Def. 3) For every subset *X* of I_1 holds $\bigsqcup_L X \in$ the carrier of I_1 .

Next we state several propositions:

- (12) Let *L* be a lattice, *L'* be a sublattice of *L*, *a*, *b* be elements of *L*, and *a'*, *b'* be elements of *L'*. If a = a' and b = b', then $a \sqcup b = a' \sqcup b'$ and $a \sqcap b = a' \sqcap b'$.
- (13) Let *L* be a lattice, *L'* be a sublattice of *L*, *X* be a subset of *L'*, *a* be an element of *L*, and *a'* be an element of *L'*. If a = a', then $a \sqsubseteq X$ iff $a' \sqsubseteq X$.
- (14) Let *L* be a lattice, *L'* be a sublattice of *L*, *X* be a subset of *L'*, *a* be an element of *L*, and *a'* be an element of *L'*. If a = a', then $X \sqsubseteq a$ iff $X \sqsubseteq a'$.
- (15) Let L be a complete lattice and L' be a sublattice of L. If L' is \square -inheriting, then L' is complete.
- (16) Let L be a complete lattice and L' be a sublattice of L. If L' is \sqcup -inheriting, then L' is complete.

Let *L* be a complete lattice. Observe that there exists a sublattice of *L* which is complete.

Let *L* be a complete lattice. One can check that every sublattice of *L* which is \square -inheriting is also complete and every sublattice of *L* which is \square -inheriting is also complete.

One can prove the following four propositions:

- (17) Let *L* be a complete lattice and *L'* be a sublattice of *L*. Suppose *L'* is \bigcap -inheriting. Let *A'* be a subset of *L'*. Then $\bigcap_{L} A' = \bigcap_{L'} A'$.
- (18) Let *L* be a complete lattice and *L'* be a sublattice of *L*. Suppose *L'* is \square -inheriting. Let *A'* be a subset of *L'*. Then $\square_L A' = \bigsqcup_{L'} A'$.
- (19) Let *L* be a complete lattice and *L'* be a sublattice of *L*. Suppose *L'* is \square -inheriting. Let *A* be a subset of *L* and *A'* be a subset of *L'*. If A = A', then $\square A = \square A'$.
- (20) Let *L* be a complete lattice and *L'* be a sublattice of *L*. Suppose *L'* is \square -inheriting. Let *A* be a subset of *L* and *A'* be a subset of *L'*. If A = A', then $\square A = \bigsqcup A'$.

Let us consider r_1 , r_2 . Let us assume that $r_1 \le r_2$. The functor RealSubLatt (r_1, r_2) yields a strict lattice and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of RealSubLatt $(r_1, r_2) = [r_1, r_2]$,

- (ii) the join operation of RealSubLatt $(r_1, r_2) = \max_{\mathbb{R}} \left[\left(\left[\left[r_1, r_2 \right], \left[r_1, r_2 \right] \right] \right] \right]$ quaset), and
- (iii) the meet operation of RealSubLatt $(r_1, r_2) = \min_{\mathbb{R}} [(:[r_1, r_2], [r_1, r_2]]]$ qua set).

One can prove the following propositions:

- (21) For all r_1, r_2 such that $r_1 \le r_2$ holds RealSubLatt (r_1, r_2) is complete.
- (22) There exists a sublattice of RealSubLatt(0, 1) which is ||-inheriting and non ||-inheriting.
- (23) There exists a complete lattice L such that there exists a sublattice of L which is \square -inheriting and non \square -inheriting.
- (24) There exists a sublattice of RealSubLatt(0, 1) which is \square -inheriting and non | |-inheriting.
- (25) There exists a complete lattice L such that there exists a sublattice of L which is \square -inheriting and non \square -inheriting.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [7] Marek Chmur. The lattice of real numbers. The lattice of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/real_lat.html.
- [8] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/nat_lat.html.
- [9] Artur Korniłowicz. Certain facts about families of subsets of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http: //mizar.org/JFM/Vol7/mssubfam.html.
- [10] Artur Korniłowicz. On the closure operator and the closure system of many sorted sets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/closure2.html.
- [11] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [12] Małgorzata Korolkiewicz. Many sorted quotient algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/ msualg_4.html.
- [13] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html.
- [14] Robert Milewski. Lattice of congruences in many sorted algebra. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/msualg_5.html.
- [15] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/eqrel_1.html.
- [17] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.

- [18] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.
- [22] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ lattices.html.

Received February 9, 1996

Published January 2, 2004