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The articlesl[18],[[6],[[20],[21],[[8],[[5],[[4],[[1F7],[[16],[[10],[[22] [11][[8] [[7],[18] [[2],[[11],[[12],
[14], [15], [9], and [10] provide the notation and terminology for this paper.

1. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS IS COMPLETE

For simplicity, we follow the rulest denotes a non empty sd4, denotes a many sorted set indexed
by I, x denotes a set, ang, ro denote real numbers.
Next we state three propositions:

(1) Forevery seX holdsx € the carrier of EqRelLatX) iff x is an equivalence relation of.
(2) idy is an equivalence relation ™.

(3) [M,M] is an equivalence relation M.

Let us considel, M. Observe that EqRelL&!) is bounded.
The following propositions are true:

(4)  LegrelLattm) = idwm-
(5) TEqReILatl{M) = [[Mv M]]
(6) Every subset of EqRelL&M) is a family of many sorted subsets indexed[by, M].

(7) Leta, bbe elements of EqRelL4t¥) andA, B be equivalence relations df. If a=Aand
b=B, thenaC biff ACB.

(8) LetX be a subset of EqRelL&l ) andX; be a family of many sorted subsets indexed by
[M,M]. SupposeX; = X. Let a, b be equivalence relations M. If a=|:Xy:| andb € X,
thenaC b.

(9) LetX be a subset of EqRelLalM) andX; be a family of many sorted subsets indexed by
[M,M]). If X; =X andX is non empty, thef|:X;:| is an equivalence relation M.

Let L be a non empty lattice structure. Let us observe tha complete if and only if the
condition (Def. 1) is satisfied.
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(Def. 1) LetX be a subset df. Then there exists an elememof L such thatX C a and for every
elementb of L such thatX C b holdsa C b.

Next we state the proposition
(10) EgRelLattM) is complete.

Let us considet, M. One can check that EqRelLé¢) is complete.
The following proposition is true

(11) LetX be a subset of EqRelL&aM ) andX; be a family of many sorted subsets indexed by
[M,M]. SupposeX; = X andX is non empty. Leg, b be equivalence relations ™. If
a=|:X¢:| andb = [ |egreiLattm) X, thena = b.

2. SUBLATTICES INHERITING SUP’s AND INF’s

LetL be a lattice and leiy be a sublattice of. We say that; is [ ]-inheriting if and only if:
(Def. 2) For every subset of 11 holds[ ]_X € the carrier ofl;.

We say that; is|_|-inheriting if and only if:
(Def. 3) For every subsét of 15 holds| || X € the carrier ofl;.

Next we state several propositions:

(12) LetL be alatticel’ be a sublattice df, a, b be elements adf, anda’, b’ be elements af’.
If a=a andb="b,thenallb=a Lk andanb=anb'.

(13) LetL be a latticel’ be a sublattice of, X be a subset df’, a be an element df, anda’
be an elementdf’. If a= 4, thenaC X iff & C X.

(14) LetL be alatticel’ be a sublattice of, X be a subset df’, a be an element df, anda’
be anelementdf’. If a=a,thenX C aiff X C d'.

(15) LetL be a complete lattice and be a sublattice of. If L’ is [ J-inheriting, thenL’ is
complete.

(16) LetL be a complete lattice and be a sublattice of. If L’ is | J-inheriting, thenL’ is
complete.

LetL be a complete lattice. Observe that there exists a sublatticevbich is complete.

Let L be a complete lattice. One can check that every sublattitevdiich is [ ]-inheriting is
also complete and every sublatticelofvhich is| |-inheriting is also complete.
One can prove the following four propositions:

(17) LetL be a complete lattice ard be a sublattice of. Supposé.’ is [ J-inheriting. LetA’
be a subset df’. Then[ LA = []U/A.

(18) LetL be a complete lattice arld be a sublattice of. Supposd.’ is | |-inheriting. LetA’
be a subset df’. Then| || A’ =| /A

(19) LetL be a complete lattice and be a sublattice of. Supposd.’ is [ ]-inheriting. LetA
be a subset df andA’ be a subset df’. If A=A’ then[ JA= A

(20) LetL be a complete lattice and be a sublattice of. Supposé.’ is| |-inheriting. LetA be
a subset of. andA’ be a subset df’. If A=A', then| JA=A.
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3. SEGMENT OFREAL NUMBERS AS ACOMPLETE LATTICE

Let us considery, ry. Let us assume thag < r,. The functor RealSubLdit;,r;) yields a strict
lattice and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of RealSubLatt,ro) = [r1,r2],

(i) the join operation of RealSubLatt,r2) = maxg [([:[r1,r2], [r1,r2]] quased, and
(ili)  the meet operation of RealSubLétt,r,) = ming [([:[r1,r2], [r1,r2] ] qua sed.

One can prove the following propositions:

(21) Forallry, rp such thatry <r; holds RealSubLaft;,r,) is complete.

(22) There exists a sublattice of RealSubl(@tt) which is| |-inheriting and nor{ J-inheriting.

(23) There exists a complete lattitesuch that there exists a sublattice lofwhich is | |-

inheriting and norf J-inheriting.

(24) There exists a sublattice of RealSubl@tt) which is[ J-inheriting and non |-inheriting.

(25) There exists a complete lattitesuch that there exists a sublattice lofwhich is [ -
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