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The articles [18], [6], [20], [21], [3], [5], [4], [17], [16], [19], [22], [1], [8], [7], [13], [2], [11], [12],
[14], [15], [9], and [10] provide the notation and terminology for this paper.

1. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS IS COMPLETE

For simplicity, we follow the rules:I denotes a non empty set,M denotes a many sorted set indexed
by I , x denotes a set, andr1, r2 denote real numbers.

Next we state three propositions:

(1) For every setX holdsx∈ the carrier of EqRelLatt(X) iff x is an equivalence relation ofX.

(2) idM is an equivalence relation ofM.

(3) [[M,M]] is an equivalence relation ofM.

Let us considerI , M. Observe that EqRelLatt(M) is bounded.
The following propositions are true:

(4) ⊥EqRelLatt(M) = idM.

(5) >EqRelLatt(M) = [[M,M]].

(6) Every subset of EqRelLatt(M) is a family of many sorted subsets indexed by[[M,M]].

(7) Leta, b be elements of EqRelLatt(M) andA, B be equivalence relations ofM. If a= A and
b = B, thenav b iff A⊆ B.

(8) Let X be a subset of EqRelLatt(M) andX1 be a family of many sorted subsets indexed by
[[M,M]]. SupposeX1 = X. Let a, b be equivalence relations ofM. If a =

⋂
|:X1:| andb∈ X,

thena⊆ b.

(9) Let X be a subset of EqRelLatt(M) andX1 be a family of many sorted subsets indexed by
[[M,M]]. If X1 = X andX is non empty, then

⋂
|:X1:| is an equivalence relation ofM.

Let L be a non empty lattice structure. Let us observe thatL is complete if and only if the
condition (Def. 1) is satisfied.
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(Def. 1) LetX be a subset ofL. Then there exists an elementa of L such thatX v a and for every
elementb of L such thatX v b holdsav b.

Next we state the proposition

(10) EqRelLatt(M) is complete.

Let us considerI , M. One can check that EqRelLatt(M) is complete.
The following proposition is true

(11) LetX be a subset of EqRelLatt(M) andX1 be a family of many sorted subsets indexed by
[[M,M]]. SupposeX1 = X andX is non empty. Leta, b be equivalence relations ofM. If
a =

⋂
|:X1:| andb = d−eEqRelLatt(M)X, thena = b.

2. SUBLATTICES INHERITING SUP’S AND INF’ S

Let L be a lattice and letI1 be a sublattice ofL. We say thatI1 is d−e-inheriting if and only if:

(Def. 2) For every subsetX of I1 holdsd−eLX ∈ the carrier ofI1.

We say thatI1 is
⊔

-inheriting if and only if:

(Def. 3) For every subsetX of I1 holds
⊔

L X ∈ the carrier ofI1.

Next we state several propositions:

(12) LetL be a lattice,L′ be a sublattice ofL, a, b be elements ofL, anda′, b′ be elements ofL′.
If a = a′ andb = b′, thenatb = a′tb′ andaub = a′ub′.

(13) LetL be a lattice,L′ be a sublattice ofL, X be a subset ofL′, a be an element ofL, anda′

be an element ofL′. If a = a′, thenav X iff a′ v X.

(14) LetL be a lattice,L′ be a sublattice ofL, X be a subset ofL′, a be an element ofL, anda′

be an element ofL′. If a = a′, thenX v a iff X v a′.

(15) Let L be a complete lattice andL′ be a sublattice ofL. If L′ is d−e-inheriting, thenL′ is
complete.

(16) Let L be a complete lattice andL′ be a sublattice ofL. If L′ is
⊔

-inheriting, thenL′ is
complete.

Let L be a complete lattice. Observe that there exists a sublattice ofL which is complete.
Let L be a complete lattice. One can check that every sublattice ofL which isd−e-inheriting is

also complete and every sublattice ofL which is
⊔

-inheriting is also complete.
One can prove the following four propositions:

(17) LetL be a complete lattice andL′ be a sublattice ofL. SupposeL′ is d−e-inheriting. LetA′

be a subset ofL′. Thend−eLA′ = d−eL′A′.

(18) LetL be a complete lattice andL′ be a sublattice ofL. SupposeL′ is
⊔

-inheriting. LetA′

be a subset ofL′. Then
⊔

L A′ =
⊔

L′ A
′.

(19) LetL be a complete lattice andL′ be a sublattice ofL. SupposeL′ is d−e-inheriting. LetA
be a subset ofL andA′ be a subset ofL′. If A = A′, thend−eA = d−eA′.

(20) LetL be a complete lattice andL′ be a sublattice ofL. SupposeL′ is
⊔

-inheriting. LetA be
a subset ofL andA′ be a subset ofL′. If A = A′, then

⊔
A =

⊔
A′.
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3. SEGMENT OFREAL NUMBERS AS A COMPLETE LATTICE

Let us considerr1, r2. Let us assume thatr1 ≤ r2. The functor RealSubLatt(r1, r2) yields a strict
lattice and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of RealSubLatt(r1, r2) = [r1, r2],

(ii) the join operation of RealSubLatt(r1, r2) = maxR �([: [r1, r2], [r1, r2] :] qua set), and

(iii) the meet operation of RealSubLatt(r1, r2) = minR �([: [r1, r2], [r1, r2] :] qua set).

One can prove the following propositions:

(21) For allr1, r2 such thatr1 ≤ r2 holds RealSubLatt(r1, r2) is complete.

(22) There exists a sublattice of RealSubLatt(0,1) which is
⊔

-inheriting and nond−e-inheriting.

(23) There exists a complete latticeL such that there exists a sublattice ofL which is
⊔

-
inheriting and nond−e-inheriting.

(24) There exists a sublattice of RealSubLatt(0,1) which isd−e-inheriting and non
⊔

-inheriting.

(25) There exists a complete latticeL such that there exists a sublattice ofL which is d−e-
inheriting and non

⊔
-inheriting.
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