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[2], [12], [3], [17], and [1] provide the notation and terminology for this paper.

1. MORE ONEQUIVALENCE RELATIONS

For simplicity, we adopt the following conventioh; X are setsM is a many sorted set indexed by
I, Ry is a binary relation oiX, andE, E, E3 are equivalence relations Xf
Next we state the proposition

(1) (Elu Ez) UEs=EjU (E2|_| E3).

Let X be a set and leR be a binary relation oX. The functor EQQIR) yields an equivalence
relation ofX and is defined by:

(Def. 1) RC EqCI(R) and for every equivalence relati@ of X such thaR C E, holds EqC(R) C
Ex.

Next we state three propositions:
(2) E1UE; =EqCIE1UE).

(3) EqCKE1) =Ey.

(4) OxURy = Ox.

2. LATTICE OF EQUIVALENCE RELATIONS

Let X be a set. The functor EqRelL&%) yielding a strict lattice is defined by the conditions
(Def. 2).

(Def. 2)(i) The carrier of EqRelLatk) = {x;x ranges over relations betweex and X:
x is an equivalence relation of}, and

(i) for all equivalence relations, y of X holds (the meet operation of EqRelL@t))(x, y) =
xNy and (the join operation of EqRelL&k))(x, y) = xUy.
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3. MANY SORTED EQUIVALENCE RELATIONS

Let us considel, M. Note that there exists a many sorted relation indexeMbwyhich is equiva-
lence.

Let us considet, M. An equivalence relation of1 is an equivalence many sorted relation
indexed byM.

We adopt the following convention: denotes a non empty séil denotes a many sorted set
indexed byl, andE4, E;, E», E3 denote equivalence relations Mdf

Let| be a non empty set, |& be a many sorted set indexed hyand letR be a many sorted
relation indexed by. The functor EQQIR) yields an equivalence relation bf and is defined by:

(Def. 3) For every elemeritof | holds(EqCI(R))(i) = EqCI(R(i)).

One can prove the following proposition

(5) EqCKE4) = Ea.

4. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS

Let| be a non empty set, |&f be a many sorted set indexed hyand letE;, E; be equivalence
relations ofM. The functorE; LI E; yielding an equivalence relation df is defined by:

(Def. 4) There exists a many sorted relatienindexed byM such thats = E; UE; andE; LIE, =
EqCI(Es).

Let us notice that the functdt; U E> is commutative.
One can prove the following propositions:

(6) E1tUE; CE1UES.
(7) For every equivalence relatidy of M such thaE; UE; C E4 holdsE; LIE; C Eg.

(8) If E1UE> C E3 and for every equivalence relatidy of M such thate; UE, C E4 holds
Ez C E4, thenEz = E1 LE».

(9) E4aUEs=E4.
(10) (E1UE2)UEs=E;L(E2UE3).
(11) EiN(E1UEz) =E;.
(12) For every equivalence relatiéiy of M such thaEs = E; NE; holdsE; LUE4 = E;.

(13) For all equivalence relatiorts, E, of M holdsE; N E» is an equivalence relation ™.

Let| be a non empty set and gt be a many sorted set indexedIbyThe functor EqRelLatM)
yields a strict lattice and is defined by the conditions (Def. 5).

(Def. 5)(i) For every sex holdsx € the carrier of EQRelLatM) iff x is an equivalence relation of
M, and

(i)  for all equivalence relations, y of M holds (the meet operation of EqRelL@f))(x,
y) = xNyand (the join operation of EqRelL&i))(x, y) = xUy.
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5. LATTICE OF CONGRUENCES INMANY SORTED ALGEBRA

Let Sbe a non empty many sorted signature ané\leé an algebra oves. Observe that every many
sorted relation indexed b& which is equivalence is also equivalence.

In the sequeSdenotes a hon void hon empty many sorted signaturédadghotes a non-empty
algebra ovess.

Next we state several propositions:

(14) Leto be an operation symbol & C;, C; be congruences &, X1, y1 be sets, ands, by
be finite sequences. Suppose, y1) € Cy(Arity (0)iena;+1) U Co(Arity (0)iena;+1)- Let X, y
be elements of Ard®,A). Supposex=a; ~ (x1) ~ by andy =a; ™ (y1) ~ bi. Then{(Den(o,
A))(x), (Den(o,A))(y)) € Ci(the result sort 0b) UCy(the result sort 0b).

(15) Leto be an operation symbol & C;, C, be congruences &, andC be an equivalence
many sorted relation indexed By SupposeC = C; LIC,. Let X3, y1 be setsn be a natural
number, andy, ap, by be finite sequences. Supposeden- n and lerg; = lenay and for
every natural numbek such thatk € domay holds (a1 (k), ax(k)) € C(Arity (0)k). Suppose
((Den(o,A))(a1 ™ (x1) " by1), (Den(o,A))(az ™ (x1) ~ b)) € C(the result sort ob) and (1,
y1) € C(Arity (0)n11). Letx be an element of Ards, A). If x=a; " (x1) ™ by, then{(Den(o,
A))(x), (Den(o,A))(az " (y1) "~ b1)) € C(the result sort 0b).

(16) Leto be an operation symbol &, C;, C, be congruences of, andC be an equiv-
alence many sorted relation indexed By SupposeC = C; LIC,. Let x, y be elements
of Args(o,A). Suppose that for every natural numiresuch thatn € domx holds (x(n),
y(n)) € C(Arity (0)n). Then{(Den(o,A))(x), (Den(o,A))(y)} € C(the result sort 0b).

(17) For all congruences;, Cy of AholdsCy LIC; is a congruence dh.
(18) For all congruences;, C of AholdsCy NC; is a congruence dh.

Let us consideS and letA be a non-empty algebra ov8r The functor CongrLat®) yields a
strict sublattice of EqRelLafthe sorts ofA) and is defined as follows:

(Def. 6) For every set holdsx € the carrier of CongrLatf) iff x is a congruence oA

We now state two propositions:

(19) idne sorts ofa IS @ congruence oh.

(20) [[the sorts ofA, the sorts ofA]] is a congruence oh.

Let us conside, A. Observe that CongrLd#) is bounded.
We now state two propositions:

(21) J—CongrLatl{A) = idthe sorts ofA-

(22)  TcongrLatta) = [the sorts oA, the sorts ofA]|.
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