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Summary. The aim of this article is to present the definition and some properties of
homomorphisms of many sorted algebras. Some auxiliary properties of many sorted functions
also have been shown.
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The articles[[11],[[15],[[16],[[6],[18],[71,[[4], 2], [[14],[[L], 3], [[12],[19], [[18],[[5], and [10] provide
the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following conventiof:is a non void non empty many sorted signature,
Ui, U are algebras oves, o is an operation symbol &, andn is a natural number.

Let | be a non empty set, |&%, B be many sorted sets indexed hylet F be a many sorted
function fromAinto B, and leti be an element df. ThenF (i) is a function fromA(i) into B(i).

Let us consideB and letU;, U, be algebras ove®. A many sorted function fror; into U, is
a many sorted function from the sortsldf into the sorts ofJs.

Let| be a set and leA be a many sorted set indexed byThe functor id, yields a many sorted
function fromA into A and is defined as follows:

(Def. 1) For every satsuch that € | holds ity (i) = idag)-
Letl; be a function. We say th#f is “1-1" if and only if:

(Def. 2) For every setand for every functiorf such thai € doml; andly(i) = f holdsf is one-
to-one.

Letl be a set. Observe that there exists a many sorted function indexedtgh is “1-1".
Next we state the proposition

(1) Letl be a set an& be a many sorted function indexed byThenF is “1-1” if and only if
for every sef such that € | holdsF (i) is one-to-one.

Let| be a set, leA, B be many sorted sets indexed hyand letl; be a many sorted function
from A into B. We say that; is onto if and only if:

(Def. 3) For every seatsuch that € | holds rnd1 (i) = B(i).

Let F, G be function yielding functions. The funct@o F yields a function yielding function
and is defined as follows:
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(Def. 4) domGoF) = domF NndomG and for every set such thati € domGo F) holds (Go
F)(i)=G(i)-F(i).

One can prove the following proposition

(2) Letl be a setA, B, C be many sorted sets indexed by be a many sorted function from
Ainto B, andG be a many sorted function froBiinto C. Then doniGoF) = | and for every
seti such that € | holds(GoF)(i) = G(i) - F (i).

Let| be a set, leA be a many sorted set indexed hyet B, C be non-empty many sorted sets
indexed byl, let F be a many sorted function frodinto B, and letG be a many sorted function
from B into C. ThenGoF is a many sorted function frow into C.

One can prove the following propositions:

(3) Letl be a setA, B be many sorted sets indexed lhyandF be a many sorted function from
AintoB. ThenFoida =F.

(4) Letl be a setA, B be many sorted sets indexed lhyandF be a many sorted function from
AintoB. ThenigoF =F.

Let| be a set, lefA, B be many sorted sets indexed hyand letF be a many sorted function
from A into B. Let us assume thdt is “1-1” and onto. The functoF ~! yielding a many sorted
function fromB into A is defined by:

(Def. 5) For every setsuch that € | holdsF (i) = F(i)~1.
Next we state the proposition

(5) Letl be a setA, B be non-empty many sorted sets indexedl piH be a many sorted
function fromA into B, andH; be a many sorted function froBinto A. If H is “1-1” and
onto andH; = H™1, thenH oH; = idg andH1 o H = ida.

Let | be a set, leA be a many sorted set indexed hyand letF be a many sorted function
indexed byl. The functorf ° A yields a many sorted set indexed lbgnd is defined as follows:

(Def. 6) For every satsuch that € | holds(F ° A)(i) = F(i)°A(i).

Let us consides, letU; be a non-empty algebra ov8rand let us consides. One can check
that every element of Args,U; ) is function-like and relation-like.

2. HOMOMORPHISMS OFMANY SORTED ALGEBRAS

We now state the proposition

(6) LetU; be an algebra ove8andx be a function. Supposec Args(o,U;). Then donx =
domArity(o) and for every sey such thaty € dom((the sorts ofJ1) - Arity (0)) holdsx(y) €
((the sorts ofJ;) - Arity (0))(y).

Let us consides, letUq, U be algebras oves, let us consideo, letF be a many sorted function
from U; into Uy, and letx be an element of Ards,U;). Let us assume that ArgsU1) # 0 and
Args(o,U,) # 0. The functor-#x yields an element of Args,U,) and is defined as follows:

(Def. 7) F#x = (Freg€F - Arity (0)))(X).

Let us consides, letU; be a non-empty algebra ovErand let us consides. One can verify
that there exists an element of AfgaU1) which is function-like and relation-like.

Let us consideb, letU;, U, be non-empty algebras ovErlet us consideo, let F be a many
sorted function frontJ; into Uy, and letx be an element of Ards,U1). ThenF#x s a function-like
relation-like element of Arg®,U,) and it can be characterized by the condition:

(Def. 8) For everyn such than € domx holds(F#x)(n) = F (Arity (0)n)(X(Nn)).
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We now state two propositions:

(7) LetgivenS oandU; be an algebra oves. If Args(o,U;) # 0, then for every elementof
Args(0,Uq) holdsx = idine sorts o, #X-

(8) LetUq, Uy, Us be non-empty algebras ov8rH; be a many sorted function froly into
Uy, Hz be a many sorted function frobp into Us, andx be an element of Args,U1). Then
(Hz o Hy)#x = Ho#(H1#xX).

Let us considef, let U1, U, be algebras oves, and letF be a many sorted function frotuy
into Up. We say thaF is a homomorphism df); into U if and only if the condition (Def. 9) is
satisfied.

(Def. 9) Leto be an operation symbol &. Suppose Arg®,U;) # 0. Let x be an element of
Args(o,U1). ThenF (the result sort 06)((Den(o,U1))(x)) = (Den(o,Uz))(F#X).

Next we state two propositions:
(9) For every algebrtl; overSholds idhe sorts o, 1S @ homomorphism dfi; into Uy.

(10) LetUs, Uz, Us be non-empty algebras ov8rH; be a many sorted function frob into
U, andH, be a many sorted function froldy into Us. SupposeH; is a homomorphism of
U; into U, andH> is a homomorphism df; into Us. ThenH o Hq is a homomorphism dfi;
into Us.

Let us consideS, letU, U, be algebras ove$, and letF be a many sorted function frotdy
into U,. We say thaF is an epimorphism dfJ; ontoU; if and only if;

(Def. 10) F is a homomorphism dfl; into U, and onto.

One can prove the following proposition

(11) LetU1, Uy, Us be non-empty algebras ovBrF be a many sorted function froby into Uy,
andG be a many sorted function frolp into Uz. Supposéd- is an epimorphism of); onto
U, andG is an epimorphism dfl, ontoUs. ThenGo F is an epimorphism df); ontoUs.

Let us considef5, let U1, U, be algebras ove$, and letF be a many sorted function frotuy
into U,. We say thaF is a monomorphism dfl; into U, if and only if;

(Def. 11) F is a homomorphism dfl; into U, and “1-1".

The following proposition is true

(12) LetU1, Uy, Us be non-empty algebras ov€r F be a many sorted function frotdy into
U, andG be a many sorted function frobp into Us. Supposd- is a monomorphism dfl;
into U, andG is a monomorphism dfi; into Uz. ThenGoF is a monomorphism dfl; into
Us.

Let us considef5, let U, U, be algebras ove$, and letF be a many sorted function frotuy
into U,. We say thaF is an isomorphism df); andU- if and only if:

(Def. 12) F is an epimorphism dfl; ontoU, and a monomorphism &f; into U».

One can prove the following three propositions:

(13) LetF be a many sorted function froby into U,. ThenF is an isomorphism df); andU,
if and only if F is a homomorphism dfl; into U, onto, and “1-1".

(14) LetU1, Us be non-empty algebras ov8rH be a many sorted function frokl, into Uy,
andH; be a many sorted function frolsp into U;. Supposeéd is an isomorphism dfJ; and
U, andH; = H~1. ThenHy is an isomorphism dfl, andUs.
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(15) LetU1, Uz, Uz be non-empty algebras ovBrH be a many sorted function froldy into
U, andH; be a many sorted function frolp into Us. SupposeH is an isomorphism of);
andU, andHs is an isomorphism dfl, andUs. ThenH;oH is an isomorphism dfj; andUs.

Let us consideBand letUs, U, be algebras oves. We say thatl; andU; are isomorphic if and
only if:

(Def. 13) There exists a many sorted function framinto U, which is an isomorphism dfi; and
Us.

Next we state the proposition

(16) For every algebrid; overSholds idne sorts o, IS an isomorphism dfi; andU; andU; and
U, are isomorphic.

Let us consideSand letU;, U, be algebras ove®. Let us note that the predicdte andU, are
isomorphic is reflexive.
Next we state two propositions:

(17) For all non-empty algebrasy, U, overSsuch that); andU; are isomorphic holds, and
U, are isomorphic.

(18) LetU;, Uz, Uz be non-empty algebras ov8r SupposédJ; andU; are isomorphic and;
andUs are isomorphic. Theb; andUs are isomorphic.

Let us consideS§, letUq, U, be non-empty algebras ov8rand letF be a many sorted function
from U into U,. Let us assume th&t is a homomorphism dfi; into U,. The functor InF yields a
strict non-empty subalgebra B and is defined as follows:

(Def. 14) The sorts of Ik = F ° (the sorts ofJq).

Next we state several propositions:

(19) LetU4 be a non-empty algebra ovBrU; be a strict non-empty algebra ov&randF be a
many sorted function frord; into U,. Supposéd- is a homomorphism dfi; intoU,. ThenF
is an epimorphism df); ontoU, if and only if ImF = U».

(20) LetU1, U, be non-empty algebras ov8rF be a many sorted function frobh, into U,, and
G be a many sorted function frobly into ImF. Supposé- = G andF is a homomorphism of
U; intoU,. ThenG is an epimorphism dfl; onto ImF.

(21) LetU1, U, be non-empty algebras ovBrandF be a many sorted function frokd; into
U,. Supposé- is a homomorphism dfl; into U,. Then there exists a many sorted function
G from U3 into ImF such thaF = G andG is an epimorphism df); onto ImF.

(22) LetU; be a non-empty algebra ov8r U, be a non-empty subalgebradf, andG be a
many sorted function fror, into Uy. If G = idine sorts otu,, thenG is a monomorphism of
U, into U;.

(23) LetUq, Uz be non-empty algebras ovBandF be a many sorted function froby, into Us.
Supposé- is a homomorphism dfl; into U,. Then there exists a many sorted functi&n
fromU; into ImF and there exists a many sorted functi®rfrom ImF into U, such thaf is
an epimorphism ofJ; onto ImF andF; is a monomorphism of I into U, andF = Ry o Fy.

(24) Let givenS U4, U be algebras oved, giveno, F be a many sorted function froly into
Uy, x be an element of Ards,U;), andf, u be functions. Suppose= f andx € Args(o,U1)
andu € Args(o,U,). Thenu = F#x if and only if for everyn such thatn € domf holds

u(n) = F (Atity (0)n) (f(1)):
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