Subalgebras of Many Sorted Algebra. Lattice of Subalgebras

Ewa Burakowska Warsaw University Białystok

MML Identifier: MSUALG_2.
WWW: http://mizar.org/JFM/Vol6/msualg_2.html

The articles [10], [6], [13], [14], [4], [5], [2], [9], [7], [15], [3], [8], [1], [11], and [12] provide the notation and terminology for this paper.

1. AUXILIARY FACTS ABOUT MANY SORTED SETS

In this paper *x* denotes a set.

The scheme *LambdaB* deals with a non empty set \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that:

There exists a function f such that dom $f = \mathcal{A}$ and for every element d of \mathcal{A} holds $f(d) = \mathcal{F}(d)$

for all values of the parameters.

Let *I* be a set, let *X* be a many sorted set indexed by *I*, and let *Y* be a non-empty many sorted set indexed by *I*. One can check that $X \cup Y$ is non-empty and $Y \cup X$ is non-empty.

The following proposition is true

(2)¹ Let *I* be a non empty set, *X*, *Y* be many sorted sets indexed by *I*, and *i* be an element of I^* . Then $\prod((X \cap Y) \cdot i) = \prod(X \cdot i) \cap \prod(Y \cdot i)$.

Let I be a set and let M be a many sorted set indexed by I. A many sorted set indexed by I is said to be a many sorted subset indexed by M if:

(Def. 1) It $\subseteq M$.

Let I be a set and let M be a non-empty many sorted set indexed by I. One can verify that there exists a many sorted subset indexed by M which is non-empty.

2. CONSTANTS OF A MANY SORTED ALGEBRA

We follow the rules: S is a non void non empty many sorted signature, o is an operation symbol of S, and U_0 , U_1 , U_2 are algebras over S.

Let *S* be a non empty many sorted signature and let U_0 be an algebra over *S*. A subset of U_0 is a many sorted subset indexed by the sorts of U_0 .

Let *S* be a non empty many sorted signature and let I_1 be a sort symbol of *S*. We say that I_1 has constants if and only if:

¹ The proposition (1) has been removed.

(Def. 2) There exists an operation symbol *o* of *S* such that (the arity of *S*)(*o*) = \emptyset and (the result sort of *S*)(*o*) = *I*₁.

Let I_1 be a non empty many sorted signature. We say that I_1 has constant operations if and only if:

(Def. 3) Every sort symbol of I_1 has constants.

Let *A* be a non empty set, let *B* be a set, let *a* be a function from *B* into A^* , and let *r* be a function from *B* into *A*. One can check that $\langle A, B, a, r \rangle$ is non empty.

Let us mention that there exists a non empty many sorted signature which is non void and strict and has constant operations.

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, and let s be a sort symbol of S. The functor Constants (U_0, s) yielding a subset of (the sorts of $U_0)(s)$ is defined by:

- (Def. 4)(i) There exists a non empty set A such that $A = (\text{the sorts of } U_0)(s)$ and $\text{Constants}(U_0, s) = \{a; a \text{ ranges over elements of } A: \bigvee_{o:\text{operation symbol of } S} ((\text{the arity of } S)(o) = \emptyset \land (\text{the result sort of } S)(o) = s \land a \in \text{rngDen}(o, U_0))\}$ if (the sorts of $U_0(s) \neq \emptyset$,
 - (ii) Constants $(U_0, s) = \emptyset$, otherwise.

Let S be a non void non empty many sorted signature and let U_0 be an algebra over S. The functor Constants (U_0) yields a subset of U_0 and is defined by:

(Def. 5) For every sort symbol *s* of *S* holds (Constants (U_0)) $(s) = \text{Constants}(U_0, s)$.

Let S be a non void non empty many sorted signature with constant operations, let U_0 be a non-empty algebra over S, and let s be a sort symbol of S. Observe that $Constants(U_0, s)$ is non empty.

Let S be a non-void non empty many sorted signature with constant operations and let U_0 be a non-empty algebra over S. One can verify that Constants (U_0) is non-empty.

3. SUBALGEBRAS OF A MANY SORTED ALGEBRA

Let *S* be a non void non empty many sorted signature, let U_0 be an algebra over *S*, let *o* be an operation symbol of *S*, and let *A* be a subset of U_0 . We say that *A* is closed on *o* if and only if:

(Def. 6) $\operatorname{rng}(\operatorname{Den}(o, U_0) \upharpoonright (A^{\#} \cdot \operatorname{the arity of } S)(o)) \subseteq (A \cdot \operatorname{the result sort of } S)(o).$

Let *S* be a non void non empty many sorted signature, let U_0 be an algebra over *S*, and let *A* be a subset of U_0 . We say that *A* is operations closed if and only if:

(Def. 7) For every operation symbol *o* of *S* holds *A* is closed on *o*.

Next we state the proposition

(3) Let S be a non void non empty many sorted signature, o be an operation symbol of S, U_0 be an algebra over S, and B_0 , B_1 be subsets of U_0 . If $B_0 \subseteq B_1$, then $(B_0^{\#} \cdot \text{the arity of } S)(o) \subseteq (B_1^{\#} \cdot \text{the arity of } S)(o)$.

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, let o be an operation symbol of S, and let A be a subset of U_0 . Let us assume that A is closed on o. The functor o_A yielding a function from $(A^{\#} \cdot \text{the arity of } S)(o)$ into $(A \cdot \text{the result sort of } S)(o)$ is defined by:

(Def. 8) $o_A = \text{Den}(o, U_0) \upharpoonright (A^{\#} \cdot \text{the arity of } S)(o).$

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, and let A be a subset of U_0 . The functor Opers (U_0, A) yields a many sorted function from $A^{\#}$ the arity of S into $A \cdot$ the result sort of S and is defined as follows:

(Def. 9) For every operation symbol *o* of *S* holds $(Opers(U_0, A))(o) = o_A$.

We now state two propositions:

- (4) Let U_0 be an algebra over *S* and *B* be a subset of U_0 . Suppose B = the sorts of U_0 . Then *B* is operations closed and for every *o* holds $o_B = \text{Den}(o, U_0)$.
- (5) For every subset *B* of U_0 such that B = the sorts of U_0 holds $Opers(U_0, B)$ = the characteristics of U_0 .

Let *S* be a non void non empty many sorted signature and let U_0 be an algebra over *S*. An algebra over *S* is called a subalgebra of U_0 if it satisfies the conditions (Def. 10).

- (Def. 10)(i) The sorts of it are a subset of U_0 , and
 - (ii) for every subset B of U_0 such that B = the sorts of it holds B is operations closed and the characteristics of it = Opers (U_0, B) .

Let *S* be a non void non empty many sorted signature and let U_0 be an algebra over *S*. Observe that there exists a subalgebra of U_0 which is strict.

Let S be a non-void non empty many sorted signature and let U_0 be a non-empty algebra over S. Observe that (the sorts of U_0 , the characteristics of U_0) is non-empty.

Let S be a non-void non empty many sorted signature and let U_0 be a non-empty algebra over S. Note that there exists a subalgebra of U_0 which is non-empty and strict.

One can prove the following propositions:

- (6) U_0 is a subalgebra of U_0 .
- (7) If U_0 is a subalgebra of U_1 and U_1 is a subalgebra of U_2 , then U_0 is a subalgebra of U_2 .
- (8) If U_1 is a strict subalgebra of U_2 and U_2 is a strict subalgebra of U_1 , then $U_1 = U_2$.
- (9) For all subalgebras U_1 , U_2 of U_0 such that the sorts of $U_1 \subseteq$ the sorts of U_2 holds U_1 is a subalgebra of U_2 .
- (10) For all strict subalgebras U_1 , U_2 of U_0 such that the sorts of U_1 = the sorts of U_2 holds $U_1 = U_2$.
- (11) Let S be a non void non empty many sorted signature, U_0 be an algebra over S, and U_1 be a subalgebra of U_0 . Then Constants (U_0) is a subset of U_1 .
- (12) Let S be a non void non empty many sorted signature with constant operations, U_0 be a non-empty algebra over S, and U_1 be a non-empty subalgebra of U_0 . Then $Constants(U_0)$ is a non-empty subset of U_1 .
- (13) Let S be a non void non empty many sorted signature with constant operations, U_0 be a non-empty algebra over S, and U_1 , U_2 be non-empty subalgebras of U_0 . Then (the sorts of U_1) \cap (the sorts of U_2) is non-empty.

4. MANY SORTED SUBSETS OF MANY SORTED ALGEBRA

Let *S* be a non void non empty many sorted signature, let U_0 be an algebra over *S*, and let *A* be a subset of U_0 . The functor SubSorts(*A*) yielding a set is defined by the condition (Def. 11).

(Def. 11) Let x be a set. Then $x \in SubSorts(A)$ if and only if the following conditions are satisfied:

- (i) $x \in (2^{\bigcup (\text{the sorts of } U_0)})^{\text{the carrier of } S}$,
- (ii) x is a subset of U_0 , and
- (iii) for every subset B of U_0 such that B = x holds B is operations closed and Constants $(U_0) \subseteq B$ and $A \subseteq B$.

Let *S* be a non void non empty many sorted signature, let U_0 be an algebra over *S*, and let *A* be a subset of U_0 . Note that SubSorts(*A*) is non empty.

Let S be a non void non empty many sorted signature and let U_0 be an algebra over S. The functor SubSorts (U_0) yielding a set is defined by the condition (Def. 12).

- (Def. 12) Let x be a set. Then $x \in \text{SubSorts}(U_0)$ if and only if the following conditions are satisfied:
 - (i) $x \in (2^{\bigcup (\text{the sorts of } U_0)})^{\text{the carrier of } S}$,
 - (ii) x is a subset of U_0 , and
 - (iii) for every subset B of U_0 such that B = x holds B is operations closed.

Let S be a non void non empty many sorted signature and let U_0 be an algebra over S. One can verify that SubSorts (U_0) is non empty.

Let *S* be a non void non empty many sorted signature, let U_0 be an algebra over *S*, and let *e* be an element of SubSorts(U_0). The functor [@]*e* yields a subset of U_0 and is defined as follows:

(Def. 13)
$$^{@}e = e$$
.

The following two propositions are true:

- (14) For all subsets A, B of U_0 holds $B \in \text{SubSorts}(A)$ iff B is operations closed and $\text{Constants}(U_0) \subseteq B$ and $A \subseteq B$.
- (15) For every subset B of U_0 holds $B \in \text{SubSorts}(U_0)$ iff B is operations closed.

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, let A be a subset of U_0 , and let s be a sort symbol of S. The functor SubSort(A, s) yielding a set is defined as follows:

(Def. 14) For every set x holds $x \in \text{SubSort}(A, s)$ iff there exists a subset B of U_0 such that $B \in \text{SubSorts}(A)$ and x = B(s).

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, let A be a subset of U_0 , and let s be a sort symbol of S. Note that SubSort(A, s) is non empty.

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, and let A be a subset of U_0 . The functor MSSubSort(A) yielding a subset of U_0 is defined as follows:

(Def. 15) For every sort symbol *s* of *S* holds (MSSubSort(*A*))(*s*) = \bigcap SubSort(*A*,*s*).

Next we state several propositions:

- (16) For every subset A of U_0 holds $Constants(U_0) \cup A \subseteq MSSubSort(A)$.
- (17) For every subset A of U_0 such that $Constants(U_0) \cup A$ is non-empty holds MSSubSort(A) is non-empty.
- (18) Let A be a subset of U_0 and B be a subset of U_0 . If $B \in \text{SubSorts}(A)$, then $((\text{MSSubSort}(A))^{\#} \cdot \text{the arity of } S)(o) \subseteq (B^{\#} \cdot \text{the arity of } S)(o).$
- (19) Let *A* be a subset of U_0 and *B* be a subset of U_0 . Suppose $B \in \text{SubSorts}(A)$. Then $\text{rng}(\text{Den}(o, U_0) \upharpoonright ((\text{MSSubSort}(A))^{\#} \cdot \text{the arity of } S)(o)) \subseteq (B \cdot \text{the result sort of } S)(o)$.
- (20) For every subset A of U_0 holds $\operatorname{rng}(\operatorname{Den}(o, U_0) \upharpoonright ((\operatorname{MSSubSort}(A))^{\#} \cdot \operatorname{the arity of } S)(o)) \subseteq (\operatorname{MSSubSort}(A) \cdot \operatorname{the result sort of } S)(o).$
- (21) For every subset A of U_0 holds MSSubSort(A) is operations closed and $A \subseteq$ MSSubSort(A).

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, and let A be a subset of U_0 . Let us assume that A is operations closed. The functor $U_0 \upharpoonright A$ yields a strict subalgebra of U_0 and is defined by:

(Def. 16) $U_0 \upharpoonright A = \langle A, (\text{Opers}(U_0, A) | \mathbf{qua} \text{ many sorted function from } A^{\#} \cdot \text{the arity of } S \text{ into } A \cdot \text{the result sort of } S \rangle$.

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, and let U_1 , U_2 be subalgebras of U_0 . The functor $U_1 \cap U_2$ yields a strict subalgebra of U_0 and is defined by the conditions (Def. 17).

- (Def. 17)(i) The sorts of $U_1 \cap U_2 =$ (the sorts of U_1) \cap (the sorts of U_2), and
 - (ii) for every subset B of U_0 such that B = the sorts of $U_1 \cap U_2$ holds B is operations closed and the characteristics of $U_1 \cap U_2$ = Opers (U_0, B) .

Let S be a non void non empty many sorted signature, let U_0 be an algebra over S, and let A be a subset of U_0 . The functor Gen(A) yielding a strict subalgebra of U_0 is defined by the conditions (Def. 18).

- (Def. 18)(i) A is a subset of Gen(A), and
 - (ii) for every subalgebra U_1 of U_0 such that A is a subset of U_1 holds Gen(A) is a subalgebra of U_1 .

Let S be a non-void non empty many sorted signature, let U_0 be a non-empty algebra over S, and let A be a non-empty subset of U_0 . Observe that Gen(A) is non-empty.

We now state three propositions:

- (22) Let *S* be a non void non empty many sorted signature, U_0 be a strict algebra over *S*, and *B* be a subset of U_0 . If B = the sorts of U_0 , then Gen $(B) = U_0$.
- (23) Let *S* be a non void non empty many sorted signature, U_0 be an algebra over *S*, U_1 be a strict subalgebra of U_0 , and *B* be a subset of U_0 . If B = the sorts of U_1 , then Gen $(B) = U_1$.
- (24) Let *S* be a non void non empty many sorted signature, U_0 be a non-empty algebra over *S*, and U_1 be a subalgebra of U_0 . Then Gen(Constants(U_0)) $\cap U_1 = \text{Gen}(\text{Constants}(U_0))$.

Let S be a non void non empty many sorted signature, let U_0 be a non-empty algebra over S, and let U_1 , U_2 be subalgebras of U_0 . The functor $U_1 \sqcup U_2$ yielding a strict subalgebra of U_0 is defined by:

(Def. 19) For every subset A of U_0 such that $A = (\text{the sorts of } U_1) \cup (\text{the sorts of } U_2)$ holds $U_1 \sqcup U_2 = \text{Gen}(A)$.

Next we state several propositions:

- (25) Let S be a non void non empty many sorted signature, U_0 be a non-empty algebra over S, U_1 be a subalgebra of U_0 , and A, B be subsets of U_0 . If $B = A \cup$ the sorts of U_1 , then $\text{Gen}(A) \sqcup U_1 = \text{Gen}(B)$.
- (26) Let *S* be a non void non empty many sorted signature, U_0 be a non-empty algebra over *S*, U_1 be a subalgebra of U_0 , and *B* be a subset of U_0 . If B = the sorts of U_0 , then $\text{Gen}(B) \sqcup U_1 = \text{Gen}(B)$.
- (27) Let *S* be a non void non empty many sorted signature, U_0 be a non-empty algebra over *S*, and U_1 , U_2 be subalgebras of U_0 . Then $U_1 \sqcup U_2 = U_2 \sqcup U_1$.
- (28) Let *S* be a non void non empty many sorted signature, U_0 be a non-empty algebra over *S*, and U_1, U_2 be strict subalgebras of U_0 . Then $U_1 \cap (U_1 \sqcup U_2) = U_1$.
- (29) Let *S* be a non-void non empty many sorted signature, U_0 be a non-empty algebra over *S*, and U_1, U_2 be strict subalgebras of U_0 . Then $U_1 \cap U_2 \sqcup U_2 = U_2$.

6. LATTICE OF SUBALGEBRAS OF MANY SORTED ALGEBRA

Let S be a non void non empty many sorted signature and let U_0 be an algebra over S. The functor Subalgebras (U_0) yielding a set is defined as follows:

(Def. 20) For every x holds $x \in \text{Subalgebras}(U_0)$ iff x is a strict subalgebra of U_0 .

Let S be a non void non empty many sorted signature and let U_0 be an algebra over S. Observe that Subalgebras (U_0) is non empty.

Let S be a non-void non empty many sorted signature and let U_0 be a non-empty algebra over S. The functor MSAlgJoin (U_0) yields a binary operation on Subalgebras (U_0) and is defined as follows:

(Def. 21) For all elements x, y of Subalgebras (U_0) and for all strict subalgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds (MSAlgJoin (U_0)) $(x, y) = U_1 \sqcup U_2$.

Let S be a non void non empty many sorted signature and let U_0 be a non-empty algebra over S. The functor MSAlgMeet (U_0) yields a binary operation on Subalgebras (U_0) and is defined as follows:

(Def. 22) For all elements x, y of Subalgebras (U_0) and for all strict subalgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds (MSAlgMeet (U_0)) $(x, y) = U_1 \cap U_2$.

In the sequel U_0 denotes a non-empty algebra over *S*. The following four propositions are true:

- (30) MSAlgJoin(U_0) is commutative.
- (31) MSAlgJoin (U_0) is associative.
- (32) For every non void non empty many sorted signature S and for every non-empty algebra U_0 over S holds MSAlgMeet (U_0) is commutative.
- (33) For every non void non empty many sorted signature S and for every non-empty algebra U_0 over S holds MSAlgMeet (U_0) is associative.

Let *S* be a non-void non empty many sorted signature and let U_0 be a non-empty algebra over *S*. The lattice of subalgebras of U_0 yields a strict lattice and is defined by:

(Def. 23) The lattice of subalgebras of $U_0 = \langle \text{Subalgebras}(U_0), \text{MSAlgJoin}(U_0), \text{MSAlgMeet}(U_0) \rangle$.

The following proposition is true

(34) Let *S* be a non-void non empty many sorted signature and U_0 be a non-empty algebra over *S*. Then the lattice of subalgebras of U_0 is bounded.

Let *S* be a non-void non empty many sorted signature and let U_0 be a non-empty algebra over *S*. Observe that the lattice of subalgebras of U_0 is bounded.

- One can prove the following propositions:
- (35) Let *S* be a non-void non empty many sorted signature and U_0 be a non-empty algebra over *S*. Then $\perp_{\text{the lattice of subalgebras of } U_0} = \text{Gen}(\text{Constants}(U_0)).$
- (36) Let *S* be a non-void non empty many sorted signature, U_0 be a non-empty algebra over *S*, and *B* be a subset of U_0 . If B = the sorts of U_0 , then $\top_{\text{the lattice of subalgebras of } U_0} = \text{Gen}(B)$.
- (37) Let *S* be a non void non empty many sorted signature and U_0 be a strict non-empty algebra over *S*. Then $\top_{\text{the lattice of subalgebras of } U_0} = U_0$.
- (38) Let S be a non void non empty many sorted signature and U_0 be an algebra over S. Then $\langle \text{the sorts of } U_0, \text{ the characteristics of } U_0 \rangle$ is a subalgebra of U_0 .
- (39) Let *S* be a non-void non empty many sorted signature and U_0 be a non-empty algebra over *S*. Then (the sorts of U_0 , the characteristics of U_0) is non-empty.

- (40) Let S be a non void non empty many sorted signature, U_0 be an algebra over S, and A be a subset of U_0 . Then the sorts of $U_0 \in \text{SubSorts}(A)$.
- (41) Let S be a non void non empty many sorted signature, U_0 be an algebra over S, and A be a subset of U_0 . Then SubSorts $(A) \subseteq$ SubSorts (U_0) .

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [8] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/prob_1. html.
- [9] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [12] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [15] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ lattices.html.

Received April 25, 1994

Published January 2, 2004