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The articles [10], [6], [13], [14], [4], [5], [2], [9], [7], [15], [3], [8], [1], [11], and [12] provide the
notation and terminology for this paper.

1. AUXILIARY FACTS ABOUT MANY SORTED SETS

In this paperx denotes a set.
The schemeLambdaBdeals with a non empty setA and a unary functorF yielding a set, and

states that:
There exists a functionf such that domf = A and for every elementd of A holds
f (d) = F (d)

for all values of the parameters.
Let I be a set, letX be a many sorted set indexed byI , and letY be a non-empty many sorted set

indexed byI . One can check thatX∪Y is non-empty andY∪X is non-empty.
The following proposition is true

(2)1 Let I be a non empty set,X, Y be many sorted sets indexed byI , andi be an element ofI∗.
Then∏((X∩Y) · i) = ∏(X · i)∩∏(Y · i).

Let I be a set and letM be a many sorted set indexed byI . A many sorted set indexed byI is
said to be a many sorted subset indexed byM if:

(Def. 1) It⊆M.

Let I be a set and letM be a non-empty many sorted set indexed byI . One can verify that there
exists a many sorted subset indexed byM which is non-empty.

2. CONSTANTS OF AMANY SORTED ALGEBRA

We follow the rules:S is a non void non empty many sorted signature,o is an operation symbol of
S, andU0, U1, U2 are algebras overS.

Let Sbe a non empty many sorted signature and letU0 be an algebra overS. A subset ofU0 is a
many sorted subset indexed by the sorts ofU0.

Let Sbe a non empty many sorted signature and letI1 be a sort symbol ofS. We say thatI1 has
constants if and only if:

1 The proposition (1) has been removed.
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(Def. 2) There exists an operation symbolo of Ssuch that (the arity ofS)(o) = /0 and (the result sort
of S)(o) = I1.

Let I1 be a non empty many sorted signature. We say thatI1 has constant operations if and only
if:

(Def. 3) Every sort symbol ofI1 has constants.

Let A be a non empty set, letB be a set, leta be a function fromB into A∗, and letr be a function
from B into A. One can check that〈A,B,a, r〉 is non empty.

Let us mention that there exists a non empty many sorted signature which is non void and strict
and has constant operations.

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and lets be
a sort symbol ofS. The functor Constants(U0,s) yielding a subset of (the sorts ofU0)(s) is defined
by:

(Def. 4)(i) There exists a non empty setA such thatA= (the sorts ofU0)(s) and Constants(U0,s) =
{a;a ranges over elements ofA:

∨
o:operation symbol ofS ((the arity ofS)(o) = /0 ∧ (the result

sort ofS)(o) = s ∧ a∈ rngDen(o,U0))} if (the sorts ofU0)(s) 6= /0,

(ii) Constants(U0,s) = /0, otherwise.

Let S be a non void non empty many sorted signature and letU0 be an algebra overS. The
functor Constants(U0) yields a subset ofU0 and is defined by:

(Def. 5) For every sort symbols of Sholds(Constants(U0))(s) = Constants(U0,s).

Let S be a non void non empty many sorted signature with constant operations, letU0 be a
non-empty algebra overS, and lets be a sort symbol ofS. Observe that Constants(U0,s) is non
empty.

Let Sbe a non void non empty many sorted signature with constant operations and letU0 be a
non-empty algebra overS. One can verify that Constants(U0) is non-empty.

3. SUBALGEBRAS OF A MANY SORTED ALGEBRA

Let S be a non void non empty many sorted signature, letU0 be an algebra overS, let o be an
operation symbol ofS, and letA be a subset ofU0. We say thatA is closed ono if and only if:

(Def. 6) rng(Den(o,U0)�(A# · the arity ofS)(o))⊆ (A· the result sort ofS)(o).

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and letA be
a subset ofU0. We say thatA is operations closed if and only if:

(Def. 7) For every operation symbolo of SholdsA is closed ono.

Next we state the proposition

(3) Let S be a non void non empty many sorted signature,o be an operation symbol ofS,
U0 be an algebra overS, andB0, B1 be subsets ofU0. If B0 ⊆ B1, then (B0

# · the arity of
S)(o)⊆ (B1

# · the arity ofS)(o).

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, let o be an
operation symbol ofS, and letA be a subset ofU0. Let us assume thatA is closed ono. The functor
oA yielding a function from(A# · the arity ofS)(o) into (A· the result sort ofS)(o) is defined by:

(Def. 8) oA = Den(o,U0)�(A# · the arity ofS)(o).

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and letA be
a subset ofU0. The functor Opers(U0,A) yields a many sorted function fromA# · the arity ofS into
A· the result sort ofSand is defined as follows:

(Def. 9) For every operation symbolo of Sholds(Opers(U0,A))(o) = oA.
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We now state two propositions:

(4) LetU0 be an algebra overSandB be a subset ofU0. SupposeB = the sorts ofU0. ThenB
is operations closed and for everyo holdsoB = Den(o,U0).

(5) For every subsetB of U0 such thatB = the sorts ofU0 holds Opers(U0,B) = the character-
istics ofU0.

Let Sbe a non void non empty many sorted signature and letU0 be an algebra overS. An algebra
overS is called a subalgebra ofU0 if it satisfies the conditions (Def. 10).

(Def. 10)(i) The sorts of it are a subset ofU0, and

(ii) for every subsetB of U0 such thatB = the sorts of it holdsB is operations closed and the
characteristics of it= Opers(U0,B).

Let Sbe a non void non empty many sorted signature and letU0 be an algebra overS. Observe
that there exists a subalgebra ofU0 which is strict.

Let Sbe a non void non empty many sorted signature and letU0 be a non-empty algebra overS.
Observe that〈the sorts ofU0, the characteristics ofU0〉 is non-empty.

Let Sbe a non void non empty many sorted signature and letU0 be a non-empty algebra overS.
Note that there exists a subalgebra ofU0 which is non-empty and strict.

One can prove the following propositions:

(6) U0 is a subalgebra ofU0.

(7) If U0 is a subalgebra ofU1 andU1 is a subalgebra ofU2, thenU0 is a subalgebra ofU2.

(8) If U1 is a strict subalgebra ofU2 andU2 is a strict subalgebra ofU1, thenU1 = U2.

(9) For all subalgebrasU1, U2 of U0 such that the sorts ofU1 ⊆ the sorts ofU2 holdsU1 is a
subalgebra ofU2.

(10) For all strict subalgebrasU1, U2 of U0 such that the sorts ofU1 = the sorts ofU2 holds
U1 = U2.

(11) LetSbe a non void non empty many sorted signature,U0 be an algebra overS, andU1 be
a subalgebra ofU0. Then Constants(U0) is a subset ofU1.

(12) Let S be a non void non empty many sorted signature with constant operations,U0 be a
non-empty algebra overS, andU1 be a non-empty subalgebra ofU0. Then Constants(U0) is a
non-empty subset ofU1.

(13) Let S be a non void non empty many sorted signature with constant operations,U0 be a
non-empty algebra overS, andU1, U2 be non-empty subalgebras ofU0. Then (the sorts of
U1)∩ (the sorts ofU2) is non-empty.

4. MANY SORTED SUBSETS OFMANY SORTED ALGEBRA

Let S be a non void non empty many sorted signature, letU0 be an algebra overS, and letA be a
subset ofU0. The functor SubSorts(A) yielding a set is defined by the condition (Def. 11).

(Def. 11) Letx be a set. Thenx∈ SubSorts(A) if and only if the following conditions are satisfied:

(i) x∈ (2
⋃

(the sorts ofU0))the carrier ofS,

(ii) x is a subset ofU0, and

(iii) for every subsetBof U0 such thatB= x holdsB is operations closed and Constants(U0)⊆B
andA⊆ B.
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Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and letA be
a subset ofU0. Note that SubSorts(A) is non empty.

Let S be a non void non empty many sorted signature and letU0 be an algebra overS. The
functor SubSorts(U0) yielding a set is defined by the condition (Def. 12).

(Def. 12) Letx be a set. Thenx∈ SubSorts(U0) if and only if the following conditions are satisfied:

(i) x∈ (2
⋃

(the sorts ofU0))the carrier ofS,

(ii) x is a subset ofU0, and

(iii) for every subsetB of U0 such thatB = x holdsB is operations closed.

Let Sbe a non void non empty many sorted signature and letU0 be an algebra overS. One can
verify that SubSorts(U0) is non empty.

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and lete be
an element of SubSorts(U0). The functor@eyields a subset ofU0 and is defined as follows:

(Def. 13) @e= e.

The following two propositions are true:

(14) For all subsetsA, B of U0 holds B ∈ SubSorts(A) iff B is operations closed and
Constants(U0)⊆ B andA⊆ B.

(15) For every subsetB of U0 holdsB∈ SubSorts(U0) iff B is operations closed.

Let S be a non void non empty many sorted signature, letU0 be an algebra overS, let A be a
subset ofU0, and lets be a sort symbol ofS. The functor SubSort(A,s) yielding a set is defined as
follows:

(Def. 14) For every setx holds x ∈ SubSort(A,s) iff there exists a subsetB of U0 such thatB ∈
SubSorts(A) andx = B(s).

Let S be a non void non empty many sorted signature, letU0 be an algebra overS, let A be a
subset ofU0, and lets be a sort symbol ofS. Note that SubSort(A,s) is non empty.

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and letA be
a subset ofU0. The functor MSSubSort(A) yielding a subset ofU0 is defined as follows:

(Def. 15) For every sort symbols of Sholds(MSSubSort(A))(s) =
⋂

SubSort(A,s).

Next we state several propositions:

(16) For every subsetA of U0 holds Constants(U0)∪A⊆MSSubSort(A).

(17) For every subsetA of U0 such that Constants(U0)∪A is non-empty holds MSSubSort(A) is
non-empty.

(18) Let A be a subset ofU0 and B be a subset ofU0. If B ∈ SubSorts(A), then
((MSSubSort(A))# · the arity ofS)(o)⊆ (B# · the arity ofS)(o).

(19) LetAbe a subset ofU0 andBbe a subset ofU0. SupposeB∈SubSorts(A). Then rng(Den(o,
U0)�((MSSubSort(A))# · the arity ofS)(o))⊆ (B· the result sort ofS)(o).

(20) For every subsetA of U0 holds rng(Den(o,U0)�((MSSubSort(A))# · the arity ofS)(o)) ⊆
(MSSubSort(A) · the result sort ofS)(o).

(21) For every subsetA of U0 holds MSSubSort(A) is operations closed andA⊆MSSubSort(A).
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5. OPERATIONS ONMANY SORTED ALGEBRA AND ITS SUBALGEBRAS

Let S be a non void non empty many sorted signature, letU0 be an algebra overS, and letA be a
subset ofU0. Let us assume thatA is operations closed. The functorU0�A yields a strict subalgebra
of U0 and is defined by:

(Def. 16) U0�A = 〈A,(Opers(U0,A) qua many sorted function fromA# · the arity of S into A · the
result sort ofS)〉.

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and letU1,
U2 be subalgebras ofU0. The functorU1∩U2 yields a strict subalgebra ofU0 and is defined by the
conditions (Def. 17).

(Def. 17)(i) The sorts ofU1∩U2 = (the sorts ofU1)∩ (the sorts ofU2), and

(ii) for every subsetB of U0 such thatB = the sorts ofU1∩U2 holdsB is operations closed
and the characteristics ofU1∩U2 = Opers(U0,B).

Let Sbe a non void non empty many sorted signature, letU0 be an algebra overS, and letA be
a subset ofU0. The functor Gen(A) yielding a strict subalgebra ofU0 is defined by the conditions
(Def. 18).

(Def. 18)(i) A is a subset of Gen(A), and

(ii) for every subalgebraU1 of U0 such thatA is a subset ofU1 holds Gen(A) is a subalgebra
of U1.

Let Sbe a non void non empty many sorted signature, letU0 be a non-empty algebra overS, and
let A be a non-empty subset ofU0. Observe that Gen(A) is non-empty.

We now state three propositions:

(22) LetSbe a non void non empty many sorted signature,U0 be a strict algebra overS, andB
be a subset ofU0. If B = the sorts ofU0, then Gen(B) = U0.

(23) Let S be a non void non empty many sorted signature,U0 be an algebra overS, U1 be a
strict subalgebra ofU0, andB be a subset ofU0. If B = the sorts ofU1, then Gen(B) = U1.

(24) LetSbe a non void non empty many sorted signature,U0 be a non-empty algebra overS,
andU1 be a subalgebra ofU0. Then Gen(Constants(U0))∩U1 = Gen(Constants(U0)).

Let Sbe a non void non empty many sorted signature, letU0 be a non-empty algebra overS, and
let U1, U2 be subalgebras ofU0. The functorU1tU2 yielding a strict subalgebra ofU0 is defined
by:

(Def. 19) For every subsetA of U0 such thatA = (the sorts ofU1)∪ (the sorts ofU2) holdsU1tU2 =
Gen(A).

Next we state several propositions:

(25) Let S be a non void non empty many sorted signature,U0 be a non-empty algebra over
S, U1 be a subalgebra ofU0, andA, B be subsets ofU0. If B = A∪ the sorts ofU1, then
Gen(A)tU1 = Gen(B).

(26) LetSbe a non void non empty many sorted signature,U0 be a non-empty algebra overS,
U1 be a subalgebra ofU0, andB be a subset ofU0. If B = the sorts ofU0, then Gen(B)tU1 =
Gen(B).

(27) LetSbe a non void non empty many sorted signature,U0 be a non-empty algebra overS,
andU1, U2 be subalgebras ofU0. ThenU1tU2 = U2tU1.

(28) LetSbe a non void non empty many sorted signature,U0 be a non-empty algebra overS,
andU1, U2 be strict subalgebras ofU0. ThenU1∩ (U1tU2) = U1.

(29) LetSbe a non void non empty many sorted signature,U0 be a non-empty algebra overS,
andU1, U2 be strict subalgebras ofU0. ThenU1∩U2tU2 = U2.
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6. LATTICE OF SUBALGEBRAS OFMANY SORTED ALGEBRA

Let Sbe a non void non empty many sorted signature and letU0 be an algebra overS. The functor
Subalgebras(U0) yielding a set is defined as follows:

(Def. 20) For everyx holdsx∈ Subalgebras(U0) iff x is a strict subalgebra ofU0.

Let Sbe a non void non empty many sorted signature and letU0 be an algebra overS. Observe
that Subalgebras(U0) is non empty.

Let Sbe a non void non empty many sorted signature and letU0 be a non-empty algebra overS.
The functor MSAlgJoin(U0) yields a binary operation on Subalgebras(U0) and is defined as follows:

(Def. 21) For all elementsx, y of Subalgebras(U0) and for all strict subalgebrasU1, U2 of U0 such
thatx = U1 andy = U2 holds(MSAlgJoin(U0))(x, y) = U1tU2.

Let S be a non void non empty many sorted signature and letU0 be a non-empty algebra over
S. The functor MSAlgMeet(U0) yields a binary operation on Subalgebras(U0) and is defined as
follows:

(Def. 22) For all elementsx, y of Subalgebras(U0) and for all strict subalgebrasU1, U2 of U0 such
thatx = U1 andy = U2 holds(MSAlgMeet(U0))(x, y) = U1∩U2.

In the sequelU0 denotes a non-empty algebra overS.
The following four propositions are true:

(30) MSAlgJoin(U0) is commutative.

(31) MSAlgJoin(U0) is associative.

(32) For every non void non empty many sorted signatureS and for every non-empty algebra
U0 overSholds MSAlgMeet(U0) is commutative.

(33) For every non void non empty many sorted signatureS and for every non-empty algebra
U0 overSholds MSAlgMeet(U0) is associative.

Let Sbe a non void non empty many sorted signature and letU0 be a non-empty algebra overS.
The lattice of subalgebras ofU0 yields a strict lattice and is defined by:

(Def. 23) The lattice of subalgebras ofU0 = 〈Subalgebras(U0),MSAlgJoin(U0),MSAlgMeet(U0)〉.

The following proposition is true

(34) LetSbe a non void non empty many sorted signature andU0 be a non-empty algebra over
S. Then the lattice of subalgebras ofU0 is bounded.

Let Sbe a non void non empty many sorted signature and letU0 be a non-empty algebra overS.
Observe that the lattice of subalgebras ofU0 is bounded.

One can prove the following propositions:

(35) LetSbe a non void non empty many sorted signature andU0 be a non-empty algebra over
S. Then⊥the lattice of subalgebras ofU0 = Gen(Constants(U0)).

(36) LetSbe a non void non empty many sorted signature,U0 be a non-empty algebra overS,
andB be a subset ofU0. If B = the sorts ofU0, then>the lattice of subalgebras ofU0 = Gen(B).

(37) LetSbe a non void non empty many sorted signature andU0 be a strict non-empty algebra
overS. Then>the lattice of subalgebras ofU0 = U0.

(38) LetSbe a non void non empty many sorted signature andU0 be an algebra overS. Then
〈the sorts ofU0, the characteristics ofU0〉 is a subalgebra ofU0.

(39) LetSbe a non void non empty many sorted signature andU0 be a non-empty algebra over
S. Then〈the sorts ofU0, the characteristics ofU0〉 is non-empty.
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(40) LetSbe a non void non empty many sorted signature,U0 be an algebra overS, andA be a
subset ofU0. Then the sorts ofU0 ∈ SubSorts(A).

(41) LetSbe a non void non empty many sorted signature,U0 be an algebra overS, andA be a
subset ofU0. Then SubSorts(A)⊆ SubSorts(U0).
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