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Summary. The basic purpose of the paper is to prepare preliminaries of the theory of
many sorted algebras. The concept of the signature of a many sorted algebra is introduced as
well as the concept of many sorted algebra itself. Some auxiliary related notions are defined.
The correspondence between (1 sorted) universal algebras [8] and many sorted algebras with
one sort only is described by introducing two functors mapping one into the other. The con-
struction is done this way that the composition of both functors is the identity on universal
algebras.

MML ldentifier: MSUALG_1.
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The articles[[10],[[183],[[12],114],T4],15],12],[1°],6],00¥],T1],[11],[[8], and_[8] provide the notation
and terminology for this paper.

1. PRELIMINARIES

In this papei, j denote sets aniddenotes a set.
One can prove the following proposition

(1) Itis not true that there exists a non-empty many sorted/isitdexed byl such thatd €
rngM.

In this article we present several logical schemes. The sciwg®&Exdeals with a sez and a
binary predicate?, and states that:
There exists a many sorted deindexed by4 such that for every such thai € 4
holds2[i, f(i)]
provided the following requirement is met:
e For everyi such thaf € 4 there existg such that?[i, j].
The scheméviSSLambdaleals with a sefd and a unary functoff yielding a set, and states
that:
There exists a many sorted deindexed by4 such that for every such thai € 4
holdsf (i) = 7 (i)
for all values of the parameters.
Letl be a set and lé¥l be a many sorted set indexed byA component oM is an element of
rngM.
One can prove the following propositions:

(2) Letl be a non empty seM be a many sorted set indexed hyandA be a component of
M. Then there existssuch thai € | andA = M(i).
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(3) For every many sorted skt indexed byl and for everyi such thai € | holdsM(i) is a
component oM.

Let us considel and letB be a many sorted set indexed IbyA many sorted set indexed lbys
said to be an element &fif:

(Def. 1) For every such thai €| holds if(i) is an element oB(i).

2. AUXILIARY FUNCTORS

Let us considel, let Abe a many sorted set indexedlpyand letB be a many sorted set indexed by
I. A many sorted set indexed Ibyis said to be a many sorted function frékninto B if:

(Def. 2) For every such that € | holds it(i) is a function fromA(i) into B(i).

Let us considel, let A be a many sorted set indexedlhyand letB be a many sorted set indexed
by |. Note that every many sorted function frawinto B is function yielding.

Let| be a set and lé¥l be a many sorted set indexed IbyThe functorv# yields a many sorted
set indexed by* and is defined by:

(Def. 3) For every elemeritof I* holdsM#(i) = [1(M -i).

Let| be a set and lé¥l be a non-empty many sorted set indexed b@ne can check that” is
non-empty.

Let us considel, letJ be a non empty set, 1€ be a function from into J, and letF be a many
sorted set indexed by ThenF - O is a many sorted set indexed hy

Let us considet, let J be a non empty set, I be a function from into J, and letF be a
non-empty many sorted set indexedbylhenF - O is a hon-empty many sorted set indexed by

Let a be a set. The functdr — ayielding a function fronN into {a}* is defined as follows:

(Def. 4) For every natural numberholds(C — a)(n) = n+— a.

In the sequeD denotes a non empty set andenotes a natural number.
We now state two propositions:

(4) Forall sets, bholds({a} — b)-(h—a)=n—h.

(5) For every set and for every many sorted setindexed by{a} such thaM = {a} — D
holds(M#. (0 — a))(n) = DSe9".

Let us considetl, i. Thenl — i is a function froml into {i}.

3. MANY SORTED SIGNATURES

We introduce many sorted signatures which are extensions of 1-sorted structure and are systems
( a carrier, operation symbols, an arity, a result $ort
where the carrier is a set, the operation symbols constitute a set, the arity is a function from the
operation symbols into the carrierand the result sort is a function from the operation symbols into
the carrier.
LetI; be a many sorted signature. We say thas void if and only if:

(Def. 5) The operation symbols 6f = 0.

Let us observe that there exists a many sorted signature which is void, strict, and non empty and
there exists a many sorted signature which is non void, strict, and non empty.

In the sequeSis a non empty many sorted signature.

Let us consideB. A sort symbol ofSis an element 08 An operation symbol oBis an element
of the operation symbols &

Let Sbe a non void non empty many sorted signature and lbetan operation symbol & The
functor Arity(o) yields an element of (the carrier 8f* and is defined by:
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(Def. 6) Arity(0) = (the arity ofS)(0).
The result sort 06 yielding an element aBis defined by:

(Def. 7) The result sort o = (the result sort 06)(0).

4. MANY SORTED ALGEBRAS

Let Sbe a 1-sorted structure. We introduce many-sorted structuresSovigich are systems

( sorts),
where the sorts constitute a many sorted set indexed by the car8er of

Let us conside& We introduce algebras ov8which are extensions of many-sorted structure
overSand are systems

( sorts, a characteristigs
where the sorts constitute a many sorted set indexed by the car@araf the characteristics is a
many sorted function from the sdftghe arity ofSinto the sortsthe result sort oS,

Let Sbe a 1-sorted structure and latbe a many-sorted structure ov@r We say thatA is
non-empty if and only if:

(Def. 8) The sorts oA are non-empty.

Let us conside&. Observe that there exists an algebra @wetich is strict and non-empty.

Let Sbe a 1-sorted structure. One can verify that there exists a many-sorted structug& over
which is strict and non-empty.

Let Sbe a 1-sorted structure and kebe a non-empty many-sorted structure o8eNote that
the sorts ofA is non-empty.

Let us consideBand letA be a non-empty algebra ov@r Observe that every component of the
sorts ofA is non empty and every component of (the sortddfis non empty.

Let Sbe a non void non empty many sorted signaturepleé an operation symbol & and
let A be an algebra ove8. The functor Arg$o,A) yields a component of (the sorts Af* and is
defined as follows:

(Def. 9) Arggo,A) = ((the sorts ofA)* - the arity ofS)(0).
The functor Resulb,A) yielding a component of the sorts Afis defined by:
(Def. 10) Resulto,A) = ((the sorts ofA) - (the result sort 05))(0).

Let Sbe a non void non empty many sorted signature le¢ an operation symbol & and let
A be an algebra ove® The functor Defo,A) yields a function from Arg&®, A) into Resulfo, A)
and is defined as follows:

(Def. 11) Dero,A) = (the characteristics d&f)(0).

We now state the proposition

(6) LetSbe a non void non empty many sorted signatorbe an operation symbol & and
A be a non-empty algebra ov8r Then Delfo, A) is non empty.

5. UNIVERSAL ALGEBRAS AS MANY SORTED
The following propositions are true:

(7) LetC be a setA, B be non empty setd; be a partial function fron€C to A, andG be a
function fromAinto B. ThenG-F is a function from donk into B.

(8) For every homogeneous quasi total non empty partial fundiidrom D* to D holds
domh = DSegarish,

(9) For every universal algebaholds signaturé is non empty.
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6. UNIVERSAL ALGEBRAS FOR MANY SORTED ALGEBRAS WITH ONE SORT

Let A be a universal algebra. Then signatiis a finite sequence of elementshof
Letl; be a many sorted signature. We say thas segmental if and only if:

(Def. 12) There exista such that the operation symbolslgt= Segn.

We now state the proposition

(10) LetSbe a non empty many sorted signature. Supj®isdrivial. Let A be an algebra over
Sandc;, ¢; be components of the sorts Af Thenc; = c;.

Let us note that there exists a many sorted signature which is segmental, trivial, non void, strict,
and non empty.
Let Abe a universal algebra. The functor MSSighyielding a non void strict segmental trivial
many sorted signature is defined by the conditions (Def. 13).
(Def. 13)(i) The carrier of MSSigi®\) = {0},
(i) the operation symbols of MSSigA) = dom signaturé,
(iii)  the arity of MSSign(A) = (O — 0) - signatured, and
(iv) the result sort of MSSigi) = domsignaturd — 0.
Let A be a universal algebra. Note that MSSighis non empty.

Let A be a universal algebra. The functor MSSisyielding a non-empty many sorted set
indexed by the carrier of MSSigA) is defined by:

(Def. 14) MSSortgA) = {0} — the carrier ofA.

Let A be a universal algebra. The functor MSChafagtyielding a many sorted function from
(MSSortgA))* - the arity of MSSigiiA) into MSSortgA) - the result sort of MSSigid) is defined
as follows:

(Def. 15) MSChara¢f) = the characteristic oA.

Let A be a universal algebra. The functor MS/g yields a strict algebra over MSSi@h) and
is defined by:

(Def. 16) MSAIgA) = (MSSortgA), MSCharactA)).

Let A be a universal algebra. One can verify that MSAgis non-empty.
Let M1 be a trivial non empty many sorted signature andAlee an algebra ovevl;. The sort
of Ayields a set and is defined as follows:

(Def. 17) There exists a componandf the sorts ofA such that the sort oA =c.

Let M; be a trivial non empty many sorted signature andilbe a non-empty algebra ovist;.
Observe that the sort éfis non empty.
We now state four propositions:

(11) LetM; be a segmental trivial non void non empty many sorted signature,an opera-

tion symbol ofM;, andA be a non-empty algebra ovbt;. Then Argsgi, A) = (the sort of
A)IenArity(i).

(12) For every non empty sétand for everyn holdsA" C A*.

(13) LetM1 be a segmental trivial non void non empty many sorted signatbeean operation
symbol ofM;, andA be a non-empty algebra ovigl;. Then Arggi, A) C (the sort ofA)*.

(14) LetM; be a segmental trivial non void non empty many sorted signaturédmda non-
empty algebra oveM;. Then the characteristics @f is a finite sequence of elements of
(the sort ofA)*—the sort ofA.
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Let M; be a segmental trivial non void hon empty many sorted signature arddeta non-

empty algebra ove¥;. The functor chara¢f) yielding a finite sequence of operational functions
of the sort ofA is defined as follows:

(Def. 18) charad®) = the characteristics dk.

In the sequeM; is a segmental trivial non void nhon empty many sorted signatureAaisch

non-empty algebra ovévi;.

Let us consideM3, A. The functor Alg (A) yields a non-empty strict universal algebra and is

defined by:

(Def. 19) Alg;(A) = (the sort ofA, charactA)).

Next we state two propositions:

(15) For every strict universal algebfeholdsA = Alg;(MSAIg(A)).

(16) LetA be a universal algebra arfdbe a function from domsignatufeinto {0}*. If f =

(0 +— 0) - signaturé\, then MSSigiA) = ({0},domsignaturd, f,domsignaturéd — 0).
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