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Summary. The basic purpose of the paper is to prepare preliminaries of the theory of
many sorted algebras. The concept of the signature of a many sorted algebra is introduced as
well as the concept of many sorted algebra itself. Some auxiliary related notions are defined.
The correspondence between (1 sorted) universal algebras [8] and many sorted algebras with
one sort only is described by introducing two functors mapping one into the other. The con-
struction is done this way that the composition of both functors is the identity on universal
algebras.

MML Identifier: MSUALG_1.

WWW: http://mizar.org/JFM/Vol6/msualg_1.html

The articles [10], [13], [12], [14], [4], [5], [2], [9], [6], [7], [1], [11], [3], and [8] provide the notation
and terminology for this paper.

1. PRELIMINARIES

In this paperi, j denote sets andI denotes a set.
One can prove the following proposition

(1) It is not true that there exists a non-empty many sorted setM indexed byI such that/0 ∈
rngM.

In this article we present several logical schemes. The schemeMSSExdeals with a setA and a
binary predicateP , and states that:

There exists a many sorted setf indexed byA such that for everyi such thati ∈ A
holdsP [i, f (i)]

provided the following requirement is met:
• For everyi such thati ∈ A there existsj such thatP [i, j].

The schemeMSSLambdadeals with a setA and a unary functorF yielding a set, and states
that:

There exists a many sorted setf indexed byA such that for everyi such thati ∈ A
holds f (i) = F (i)

for all values of the parameters.
Let I be a set and letM be a many sorted set indexed byI . A component ofM is an element of

rngM.
One can prove the following propositions:

(2) Let I be a non empty set,M be a many sorted set indexed byI , andA be a component of
M. Then there existsi such thati ∈ I andA = M(i).
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(3) For every many sorted setM indexed byI and for everyi such thati ∈ I holdsM(i) is a
component ofM.

Let us considerI and letB be a many sorted set indexed byI . A many sorted set indexed byI is
said to be an element ofB if:

(Def. 1) For everyi such thati ∈ I holds it(i) is an element ofB(i).

2. AUXILIARY FUNCTORS

Let us considerI , let A be a many sorted set indexed byI , and letB be a many sorted set indexed by
I . A many sorted set indexed byI is said to be a many sorted function fromA into B if:

(Def. 2) For everyi such thati ∈ I holds it(i) is a function fromA(i) into B(i).

Let us considerI , let A be a many sorted set indexed byI , and letB be a many sorted set indexed
by I . Note that every many sorted function fromA into B is function yielding.

Let I be a set and letM be a many sorted set indexed byI . The functorM# yields a many sorted
set indexed byI∗ and is defined by:

(Def. 3) For every elementi of I∗ holdsM#(i) = ∏(M · i).

Let I be a set and letM be a non-empty many sorted set indexed byI . One can check thatM# is
non-empty.

Let us considerI , let J be a non empty set, letO be a function fromI into J, and letF be a many
sorted set indexed byJ. ThenF ·O is a many sorted set indexed byI .

Let us considerI , let J be a non empty set, letO be a function fromI into J, and letF be a
non-empty many sorted set indexed byJ. ThenF ·O is a non-empty many sorted set indexed byI .

Let a be a set. The functor� 7−→ a yielding a function fromN into {a}∗ is defined as follows:

(Def. 4) For every natural numbern holds(� 7−→ a)(n) = n 7→ a.

In the sequelD denotes a non empty set andn denotes a natural number.
We now state two propositions:

(4) For all setsa, b holds({a} 7−→ b) · (n 7→ a) = n 7→ b.

(5) For every seta and for every many sorted setM indexed by{a} such thatM = {a} 7−→ D
holds(M# · (� 7−→ a))(n) = DSegn.

Let us considerI , i. ThenI 7−→ i is a function fromI into {i}.

3. MANY SORTED SIGNATURES

We introduce many sorted signatures which are extensions of 1-sorted structure and are systems
〈 a carrier, operation symbols, an arity, a result sort〉,

where the carrier is a set, the operation symbols constitute a set, the arity is a function from the
operation symbols into the carrier∗, and the result sort is a function from the operation symbols into
the carrier.

Let I1 be a many sorted signature. We say thatI1 is void if and only if:

(Def. 5) The operation symbols ofI1 = /0.

Let us observe that there exists a many sorted signature which is void, strict, and non empty and
there exists a many sorted signature which is non void, strict, and non empty.

In the sequelS is a non empty many sorted signature.
Let us considerS. A sort symbol ofSis an element ofS. An operation symbol ofSis an element

of the operation symbols ofS.
Let Sbe a non void non empty many sorted signature and leto be an operation symbol ofS. The

functor Arity(o) yields an element of (the carrier ofS)∗ and is defined by:
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(Def. 6) Arity(o) = (the arity ofS)(o).

The result sort ofo yielding an element ofS is defined by:

(Def. 7) The result sort ofo = (the result sort ofS)(o).

4. MANY SORTED ALGEBRAS

Let Sbe a 1-sorted structure. We introduce many-sorted structures overSwhich are systems
〈 sorts〉,

where the sorts constitute a many sorted set indexed by the carrier ofS.
Let us considerS. We introduce algebras overSwhich are extensions of many-sorted structure

overSand are systems
〈 sorts, a characteristics〉,

where the sorts constitute a many sorted set indexed by the carrier ofSand the characteristics is a
many sorted function from the sorts# · the arity ofS into the sorts·the result sort ofS.

Let S be a 1-sorted structure and letA be a many-sorted structure overS. We say thatA is
non-empty if and only if:

(Def. 8) The sorts ofA are non-empty.

Let us considerS. Observe that there exists an algebra overSwhich is strict and non-empty.
Let S be a 1-sorted structure. One can verify that there exists a many-sorted structure overS

which is strict and non-empty.
Let Sbe a 1-sorted structure and letA be a non-empty many-sorted structure overS. Note that

the sorts ofA is non-empty.
Let us considerSand letA be a non-empty algebra overS. Observe that every component of the

sorts ofA is non empty and every component of (the sorts ofA)# is non empty.
Let S be a non void non empty many sorted signature, leto be an operation symbol ofS, and

let A be an algebra overS. The functor Args(o,A) yields a component of (the sorts ofA)# and is
defined as follows:

(Def. 9) Args(o,A) = ((the sorts ofA)# · the arity ofS)(o).

The functor Result(o,A) yielding a component of the sorts ofA is defined by:

(Def. 10) Result(o,A) = ((the sorts ofA) · (the result sort ofS))(o).

Let Sbe a non void non empty many sorted signature, leto be an operation symbol ofS, and let
A be an algebra overS. The functor Den(o,A) yields a function from Args(o,A) into Result(o,A)
and is defined as follows:

(Def. 11) Den(o,A) = (the characteristics ofA)(o).

We now state the proposition

(6) Let Sbe a non void non empty many sorted signature,o be an operation symbol ofS, and
A be a non-empty algebra overS. Then Den(o,A) is non empty.

5. UNIVERSAL ALGEBRAS AS MANY SORTED

The following propositions are true:

(7) Let C be a set,A, B be non empty sets,F be a partial function fromC to A, andG be a
function fromA into B. ThenG·F is a function from domF into B.

(8) For every homogeneous quasi total non empty partial functionh from D∗ to D holds
domh = DSegarityh.

(9) For every universal algebraA holds signatureA is non empty.
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6. UNIVERSAL ALGEBRAS FOR MANY SORTED ALGEBRAS WITH ONE SORT

Let A be a universal algebra. Then signatureA is a finite sequence of elements ofN.
Let I1 be a many sorted signature. We say thatI1 is segmental if and only if:

(Def. 12) There existsn such that the operation symbols ofI1 = Segn.

We now state the proposition

(10) LetSbe a non empty many sorted signature. SupposeS is trivial. Let A be an algebra over
Sandc1, c2 be components of the sorts ofA. Thenc1 = c2.

Let us note that there exists a many sorted signature which is segmental, trivial, non void, strict,
and non empty.

Let A be a universal algebra. The functor MSSign(A) yielding a non void strict segmental trivial
many sorted signature is defined by the conditions (Def. 13).

(Def. 13)(i) The carrier of MSSign(A) = {0},
(ii) the operation symbols of MSSign(A) = domsignatureA,

(iii) the arity of MSSign(A) = (� 7−→ 0) ·signatureA, and

(iv) the result sort of MSSign(A) = domsignatureA 7−→ 0.

Let A be a universal algebra. Note that MSSign(A) is non empty.
Let A be a universal algebra. The functor MSSorts(A) yielding a non-empty many sorted set

indexed by the carrier of MSSign(A) is defined by:

(Def. 14) MSSorts(A) = {0} 7−→ the carrier ofA.

Let A be a universal algebra. The functor MSCharact(A) yielding a many sorted function from
(MSSorts(A))# · the arity of MSSign(A) into MSSorts(A) · the result sort of MSSign(A) is defined
as follows:

(Def. 15) MSCharact(A) = the characteristic ofA.

Let A be a universal algebra. The functor MSAlg(A) yields a strict algebra over MSSign(A) and
is defined by:

(Def. 16) MSAlg(A) = 〈MSSorts(A),MSCharact(A)〉.

Let A be a universal algebra. One can verify that MSAlg(A) is non-empty.
Let M1 be a trivial non empty many sorted signature and letA be an algebra overM1. The sort

of A yields a set and is defined as follows:

(Def. 17) There exists a componentc of the sorts ofA such that the sort ofA = c.

Let M1 be a trivial non empty many sorted signature and letA be a non-empty algebra overM1.
Observe that the sort ofA is non empty.

We now state four propositions:

(11) Let M1 be a segmental trivial non void non empty many sorted signature,i be an opera-
tion symbol ofM1, andA be a non-empty algebra overM1. Then Args(i,A) = (the sort of
A)lenArity(i).

(12) For every non empty setA and for everyn holdsAn ⊆ A∗.

(13) LetM1 be a segmental trivial non void non empty many sorted signature,i be an operation
symbol ofM1, andA be a non-empty algebra overM1. Then Args(i,A)⊆ (the sort ofA)∗.

(14) LetM1 be a segmental trivial non void non empty many sorted signature andA be a non-
empty algebra overM1. Then the characteristics ofA is a finite sequence of elements of
(the sort ofA)∗→̇the sort ofA.
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Let M1 be a segmental trivial non void non empty many sorted signature and letA be a non-
empty algebra overM1. The functor charact(A) yielding a finite sequence of operational functions
of the sort ofA is defined as follows:

(Def. 18) charact(A) = the characteristics ofA.

In the sequelM1 is a segmental trivial non void non empty many sorted signature andA is a
non-empty algebra overM1.

Let us considerM1, A. The functor Alg1(A) yields a non-empty strict universal algebra and is
defined by:

(Def. 19) Alg1(A) = 〈the sort ofA, charact(A)〉.

Next we state two propositions:

(15) For every strict universal algebraA holdsA = Alg1(MSAlg(A)).

(16) Let A be a universal algebra andf be a function from domsignatureA into {0}∗. If f =
(� 7−→ 0) ·signatureA, then MSSign(A) = 〈{0},domsignatureA, f ,domsignatureA 7−→ 0〉.
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