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The articles [18], [5], [21], [16], [22], [3], [1], [4], [7], [6], [19], [20], [2], [12], [13], [14], [8], [15],
[10], [17], [9], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules:I , G, H, i denote sets,A, B, M denote many sorted sets
indexed byI , s1, s2, s3 denote families of subsets ofI , v, w denote subsets ofI , andF denotes a
many sorted function indexed byI .

The schemeMSFExFuncdeals with a setA , many sorted setsB, C indexed byA , and a ternary
predicateP , and states that:

There exists a many sorted functionF from B into C such that for every seti if i ∈A ,
then there exists a functionf from B(i) into C (i) such thatf = F(i) and for every
setx such thatx∈ B(i) holdsP [ f (x),x, i]

provided the following condition is met:
• For every seti such thati ∈ A and for every setx such thatx∈ B(i) there exists a set

y such thaty∈ C (i) andP [y,x, i].
Next we state a number of propositions:

(1) If s1 6= /0, then Intersect(s1)⊆
⋃

s1.

(2) If G∈ s1, then Intersect(s1)⊆G.

(3) If /0 ∈ s1, then Intersect(s1) = /0.

(4) For every subsetZ of I such that for every setZ1 such thatZ1 ∈ s1 holdsZ ⊆ Z1 holds
Z⊆ Intersect(s1).

(5) If s1 6= /0 and for every setZ1 such thatZ1 ∈ s1 holdsG⊆ Z1, thenG⊆ Intersect(s1).

(6) If G∈ s1 andG⊆ H, then Intersect(s1)⊆ H.

(7) If G∈ s1 andG missesH, then Intersect(s1) missesH.

(8) If s3 = s1∪s2, then Intersect(s3) = Intersect(s1)∩ Intersect(s2).

(9) If s1 = {v}, then Intersect(s1) = v.
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(10) If s1 = {v,w}, then Intersect(s1) = v∩w.

(11) If A∈ B, thenA is an element ofB.

(12) For every non-empty many sorted setB indexed byI such thatA is an element ofB holds
A∈ B.

(13) For every functionf such thati ∈ I and f = F(i) holds(rngκ F(κ))(i) = rng f .

(14) For every functionf such thati ∈ I and f = F(i) holds(domκ F(κ))(i) = dom f .

(15) For all many sorted functionsF , G indexed byI holdsG◦F is a many sorted function
indexed byI .

(16) LetA be a non-empty many sorted set indexed byI andF be a many sorted function from
A into 0I . ThenF = 0I .

(17) If A is transformable toB andF is a many sorted function fromA into B, then domκ F(κ) =
A and rngκ F(κ)⊆ B.

2. FINITE MANY SORTED SETS

Let us considerI . Observe that every many sorted set indexed byI which is empty yielding is also
locally-finite.

Let us considerI . Observe that0I is empty yielding and locally-finite.
Let us considerI , A. Note that there exists a many sorted subset indexed byA which is empty

yielding and locally-finite.
One can prove the following proposition

(18) If A⊆ B andB is locally-finite, thenA is locally-finite.

Let us considerI and letA be a locally-finite many sorted set indexed byI . Note that every many
sorted subset indexed byA is locally-finite.

Let us considerI and letA, B be locally-finite many sorted sets indexed byI . One can verify
thatA∪B is locally-finite.

Let us considerI , A and letB be a locally-finite many sorted set indexed byI . Note thatA∩B is
locally-finite.

Let us considerI , B and letA be a locally-finite many sorted set indexed byI . One can verify
thatA∩B is locally-finite.

Let us considerI , B and letA be a locally-finite many sorted set indexed byI . One can check
thatA\B is locally-finite.

Let us considerI , F and letA be a locally-finite many sorted set indexed byI . Observe thatF ◦A
is locally-finite.

Let us considerI and letA, B be locally-finite many sorted sets indexed byI . Observe that[[A,B]]
is locally-finite.

Next we state three propositions:

(19) If B is non-empty and[[A,B]] is locally-finite, thenA is locally-finite.

(20) If A is non-empty and[[A,B]] is locally-finite, thenB is locally-finite.

(21) A is locally-finite iff 2A is locally-finite.

Let us considerI and letM be a locally-finite many sorted set indexed byI . Note that 2M is
locally-finite.

One can prove the following four propositions:

(22) Let A be a non-empty many sorted set indexed byI . SupposeA is locally-finite and for
every many sorted setM indexed byI such thatM ∈ A holdsM is locally-finite. Then

⋃
A is

locally-finite.
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(23) If
⋃

A is locally-finite, thenA is locally-finite and for everyM such thatM ∈ A holdsM is
locally-finite.

(24) If domκ F(κ) is locally-finite, then rngκ F(κ) is locally-finite.

(25) SupposeA⊆ rngκ F(κ) and for every seti and for every functionf such thati ∈ I and
f = F(i) holds f−1(A(i)) is finite. ThenA is locally-finite.

Let us considerI and letA, B be locally-finite many sorted sets indexed byI . Observe that
MSFuncs(A,B) is locally-finite.

Let us considerI and letA, B be locally-finite many sorted sets indexed byI . One can verify
thatA−. B is locally-finite.

In the sequelX, Y, Z denote many sorted sets indexed byI .
The following propositions are true:

(26) SupposeX is locally-finite andX⊆ [[Y,Z]]. Then there existA, B such thatA is locally-finite
andA⊆Y andB is locally-finite andB⊆ Z andX ⊆ [[A,B]].

(27) SupposeX is locally-finite andZ is locally-finite andX ⊆ [[Y,Z]]. Then there existsA such
thatA is locally-finite andA⊆Y andX ⊆ [[A,Z]].

(28) Let M be a non-empty locally-finite many sorted set indexed byI . Suppose that for all
many sorted setsA, B indexed byI such thatA∈ M andB∈ M holdsA⊆ B or B⊆ A. Then
there exists a many sorted setm indexed byI such thatm∈M and for every many sorted set
K indexed byI such thatK ∈M holdsm⊆ K.

(29) Let M be a non-empty locally-finite many sorted set indexed byI . Suppose that for all
many sorted setsA, B indexed byI such thatA∈ M andB∈ M holdsA⊆ B or B⊆ A. Then
there exists a many sorted setm indexed byI such thatm∈ M and for every many sorted set
K indexed byI such thatK ∈M holdsK ⊆m.

(30) If Z is locally-finite andZ⊆ rngκ F(κ), then there existsY such thatY⊆ domκ F(κ) andY
is locally-finite andF ◦Y = Z.

3. A FAMILY OF SUBSETS OFMANY SORTED SETS

Let us considerI , M. A subset family ofM is a many sorted subset indexed by 2M.
Let us considerI , M. Note that there exists a subset family ofM which is non-empty.
Let us considerI , M. Then 2M is a subset family ofM.
Let us considerI , M. Observe that there exists a subset family ofM which is empty yielding

and locally-finite.
One can prove the following proposition

(31) 0I is an empty yielding locally-finite subset family ofM.

Let us considerI and letM be a locally-finite many sorted set indexed byI . Observe that there
exists a subset family ofM which is non-empty and locally-finite.

We adopt the following convention:S1, S2, S3 are subset families ofM, S4 is a non-empty subset
family of M, andV, W are many sorted subsets indexed byM.

Let I be a non empty set, letM be a many sorted set indexed byI , let S1 be a subset family of
M, and leti be an element ofI . ThenS1(i) is a family of subsets ofM(i).

One can prove the following propositions:

(32) If i ∈ I , thenS1(i) is a family of subsets ofM(i).

(33) If A∈ S1, thenA is a many sorted subset indexed byM.

(34) S1∪S2 is a subset family ofM.

(35) S1∩S2 is a subset family ofM.
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(36) S1\A is a subset family ofM.

(37) S1−. S2 is a subset family ofM.

(38) If A⊆M, then{A} is a subset family ofM.

(39) If A⊆M andB⊆M, then{A,B} is a subset family ofM.

(40)
⋃

S1 ⊆M.

4. INTERSECTION OF AFAMILY OF MANY SORTED SETS

Let us considerI , M, S1. The functor
⋂

S1 yielding a many sorted set indexed byI is defined by:

(Def. 2)1 For every seti such thati ∈ I there exists a familyQ of subsets ofM(i) such thatQ= S1(i)
and(

⋂
S1)(i) = Intersect(Q).

Let us considerI , M, S1. Then
⋂

S1 is a many sorted subset indexed byM.
The following propositions are true:

(41) If S1 = 0I , then
⋂

S1 = M.

(42)
⋂

S4 ⊆
⋃

S4.

(43) If A∈ S1, then
⋂

S1 ⊆ A.

(44) If 0I ∈ S1, then
⋂

S1 = 0I .

(45) Let Z, M be many sorted sets indexed byI andS1 be a non-empty subset family ofM.
Suppose that for every many sorted setZ1 indexed byI such thatZ1 ∈ S1 holdsZ⊆ Z1. Then
Z⊆

⋂
S1.

(46) If S1 ⊆ S2, then
⋂

S2 ⊆
⋂

S1.

(47) If A∈ S1 andA⊆ B, then
⋂

S1 ⊆ B.

(48) If A∈ S1 andA∩B = 0I , then
⋂

S1∩B = 0I .

(49) If S3 = S1∪S2, then
⋂

S3 =
⋂

S1∩
⋂

S2.

(50) If S1 = {V}, then
⋂

S1 = V.

(51) If S1 = {V,W}, then
⋂

S1 = V ∩W.

(52) If A∈
⋂

S1, then for everyB such thatB∈ S1 holdsA∈ B.

(53) Let A, M be many sorted sets indexed byI andS1 be a non-empty subset family ofM.
SupposeA∈ M and for every many sorted setB indexed byI such thatB∈ S1 holdsA∈ B.
ThenA∈

⋂
S1.

Let us considerI , M and letI1 be a subset family ofM. We say thatI1 is additive if and only if:

(Def. 3) For allA, B such thatA∈ I1 andB∈ I1 holdsA∪B∈ I1.

We say thatI1 is absolutely-additive if and only if:

(Def. 4) For every subset familyF of M such thatF ⊆ I1 holds
⋃

F ∈ I1.

We say thatI1 is multiplicative if and only if:

(Def. 5) For allA, B such thatA∈ I1 andB∈ I1 holdsA∩B∈ I1.

We say thatI1 is absolutely-multiplicative if and only if:

1 The definition (Def. 1) has been removed.
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(Def. 6) For every subset familyF of M such thatF ⊆ I1 holds
⋂

F ∈ I1.

We say thatI1 is properly upper bound if and only if:

(Def. 7) M ∈ I1.

We say thatI1 is properly lower bound if and only if:

(Def. 8) 0I ∈ I1.

Let us considerI , M. Observe that there exists a subset family ofM which is non-empty,
additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper bound, and
properly lower bound.

Let us considerI , M. Then 2M is an additive absolutely-additive multiplicative absolutely-
multiplicative properly upper bound properly lower bound subset family ofM.

Let us considerI , M. Note that every subset family ofM which is absolutely-additive is also
additive.

Let us considerI , M. Observe that every subset family ofM which is absolutely-multiplicative
is also multiplicative.

Let us considerI , M. Observe that every subset family ofM which is absolutely-multiplicative
is also properly upper bound.

Let us considerI , M. Note that every subset family ofM which is properly upper bound is also
non-empty.

Let us considerI , M. Note that every subset family ofM which is absolutely-additive is also
properly lower bound.

Let us considerI , M. One can verify that every subset family ofM which is properly lower
bound is also non-empty.
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