# Certain Facts about Families of Subsets of Many Sorted Sets

Artur Korniłowicz Institute of Mathematics Warsaw University Białystok

MML Identifier: MSSUBFAM.

WWW: http://mizar.org/JFM/Vol7/mssubfam.html

The articles [18], [5], [21], [16], [22], [3], [1], [4], [7], [6], [19], [20], [2], [12], [13], [14], [8], [15], [10], [17], [9], and [11] provide the notation and terminology for this paper.

## 1. Preliminaries

For simplicity, we adopt the following rules: I, G, H, i denote sets, A, B, M denote many sorted sets indexed by I,  $s_1$ ,  $s_2$ ,  $s_3$  denote families of subsets of I, v, w denote subsets of I, and F denotes a many sorted function indexed by I.

The scheme MSFExFunc deals with a set  $\mathcal{A}$ , many sorted sets  $\mathcal{B}$ ,  $\mathcal{C}$  indexed by  $\mathcal{A}$ , and a ternary predicate  $\mathcal{P}$ , and states that:

There exists a many sorted function F from  $\mathcal{B}$  into  $\mathcal{C}$  such that for every set i if  $i \in \mathcal{A}$ , then there exists a function f from  $\mathcal{B}(i)$  into  $\mathcal{C}(i)$  such that f = F(i) and for every set x such that  $x \in \mathcal{B}(i)$  holds  $\mathcal{P}[f(x), x, i]$ 

provided the following condition is met:

• For every set i such that  $i \in \mathcal{A}$  and for every set x such that  $x \in \mathcal{B}(i)$  there exists a set y such that  $y \in \mathcal{C}(i)$  and  $\mathcal{P}[y, x, i]$ .

Next we state a number of propositions:

- (1) If  $s_1 \neq \emptyset$ , then Intersect $(s_1) \subseteq \bigcup s_1$ .
- (2) If  $G \in s_1$ , then Intersect $(s_1) \subseteq G$ .
- (3) If  $\emptyset \in s_1$ , then Intersect $(s_1) = \emptyset$ .
- (4) For every subset Z of I such that for every set  $Z_1$  such that  $Z_1 \in s_1$  holds  $Z \subseteq Intersect(s_1)$ .
- (5) If  $s_1 \neq \emptyset$  and for every set  $Z_1$  such that  $Z_1 \in s_1$  holds  $G \subseteq Z_1$ , then  $G \subseteq \text{Intersect}(s_1)$ .
- (6) If  $G \in s_1$  and  $G \subseteq H$ , then Intersect $(s_1) \subseteq H$ .
- (7) If  $G \in s_1$  and G misses H, then Intersect $(s_1)$  misses H.
- (8) If  $s_3 = s_1 \cup s_2$ , then Intersect $(s_3) = Intersect(s_1) \cap Intersect(s_2)$ .
- (9) If  $s_1 = \{v\}$ , then Intersect $(s_1) = v$ .

- (10) If  $s_1 = \{v, w\}$ , then Intersect $(s_1) = v \cap w$ .
- (11) If  $A \in B$ , then A is an element of B.
- (12) For every non-empty many sorted set *B* indexed by *I* such that *A* is an element of *B* holds  $A \in B$ .
- (13) For every function f such that  $i \in I$  and f = F(i) holds  $(\operatorname{rng}_{\kappa} F(\kappa))(i) = \operatorname{rng} f$ .
- (14) For every function f such that  $i \in I$  and f = F(i) holds  $(\text{dom}_{\kappa} F(\kappa))(i) = \text{dom } f$ .
- (15) For all many sorted functions F, G indexed by I holds  $G \circ F$  is a many sorted function indexed by I.
- (16) Let *A* be a non-empty many sorted set indexed by *I* and *F* be a many sorted function from *A* into  $\mathbf{0}_I$ . Then  $F = \mathbf{0}_I$ .
- (17) If *A* is transformable to *B* and *F* is a many sorted function from *A* into *B*, then  $\operatorname{dom}_{\kappa} F(\kappa) = A$  and  $\operatorname{rng}_{\kappa} F(\kappa) \subseteq B$ .

### 2. FINITE MANY SORTED SETS

Let us consider *I*. Observe that every many sorted set indexed by *I* which is empty yielding is also locally-finite.

Let us consider I. Observe that  $\mathbf{0}_I$  is empty yielding and locally-finite.

Let us consider *I*, *A*. Note that there exists a many sorted subset indexed by *A* which is empty yielding and locally-finite.

One can prove the following proposition

(18) If  $A \subseteq B$  and B is locally-finite, then A is locally-finite.

Let us consider *I* and let *A* be a locally-finite many sorted set indexed by *I*. Note that every many sorted subset indexed by *A* is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. One can verify that  $A \cup B$  is locally-finite.

Let us consider I, A and let B be a locally-finite many sorted set indexed by I. Note that  $A \cap B$  is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by I. One can verify that  $A \cap B$  is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by I. One can check that  $A \setminus B$  is locally-finite.

Let us consider I, F and let A be a locally-finite many sorted set indexed by I. Observe that  $F \circ A$  is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Observe that  $[\![A,B]\!]$  is locally-finite.

Next we state three propositions:

- (19) If B is non-empty and [A, B] is locally-finite, then A is locally-finite.
- (20) If A is non-empty and [A, B] is locally-finite, then B is locally-finite.
- (21) A is locally-finite iff  $2^A$  is locally-finite.

Let us consider I and let M be a locally-finite many sorted set indexed by I. Note that  $2^{M}$  is locally-finite.

One can prove the following four propositions:

(22) Let A be a non-empty many sorted set indexed by I. Suppose A is locally-finite and for every many sorted set M indexed by I such that  $M \in A$  holds M is locally-finite. Then  $\bigcup A$  is locally-finite.

- (23) If  $\bigcup A$  is locally-finite, then A is locally-finite and for every M such that  $M \in A$  holds M is locally-finite.
- (24) If  $\operatorname{dom}_{\kappa} F(\kappa)$  is locally-finite, then  $\operatorname{rng}_{\kappa} F(\kappa)$  is locally-finite.
- (25) Suppose  $A \subseteq \operatorname{rng}_{\kappa} F(\kappa)$  and for every set i and for every function f such that  $i \in I$  and f = F(i) holds  $f^{-1}(A(i))$  is finite. Then A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. Observe that MSFuncs(A,B) is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by I. One can verify that  $A \dot{=} B$  is locally-finite.

In the sequel X, Y, Z denote many sorted sets indexed by I.

The following propositions are true:

- (26) Suppose *X* is locally-finite and  $X \subseteq [\![Y,Z]\!]$ . Then there exist *A*, *B* such that *A* is locally-finite and  $A \subseteq Y$  and *B* is locally-finite and  $B \subseteq Z$  and  $X \subseteq [\![A,B]\!]$ .
- (27) Suppose *X* is locally-finite and *Z* is locally-finite and  $X \subseteq [Y, Z]$ . Then there exists *A* such that *A* is locally-finite and  $A \subseteq Y$  and  $X \subseteq [A, Z]$ .
- (28) Let M be a non-empty locally-finite many sorted set indexed by I. Suppose that for all many sorted sets A, B indexed by I such that  $A \in M$  and  $B \in M$  holds  $A \subseteq B$  or  $B \subseteq A$ . Then there exists a many sorted set m indexed by I such that  $m \in M$  and for every many sorted set K indexed by I such that  $K \in M$  holds  $M \subseteq K$ .
- (29) Let M be a non-empty locally-finite many sorted set indexed by I. Suppose that for all many sorted sets A, B indexed by I such that  $A \in M$  and  $B \in M$  holds  $A \subseteq B$  or  $B \subseteq A$ . Then there exists a many sorted set M indexed by M such that  $M \in M$  and for every many sorted set M indexed by M such that M indexed by M is a function of M indexed by M inde
- (30) If Z is locally-finite and  $Z \subseteq \operatorname{rng}_{\kappa} F(\kappa)$ , then there exists Y such that  $Y \subseteq \operatorname{dom}_{\kappa} F(\kappa)$  and Y is locally-finite and  $F \circ Y = Z$ .

## 3. A Family of Subsets of Many Sorted Sets

Let us consider I, M. A subset family of M is a many sorted subset indexed by  $2^{M}$ .

Let us consider I, M. Note that there exists a subset family of M which is non-empty.

Let us consider I, M. Then  $2^M$  is a subset family of M.

Let us consider I, M. Observe that there exists a subset family of M which is empty yielding and locally-finite.

One can prove the following proposition

(31)  $\mathbf{0}_I$  is an empty yielding locally-finite subset family of M.

Let us consider I and let M be a locally-finite many sorted set indexed by I. Observe that there exists a subset family of M which is non-empty and locally-finite.

We adopt the following convention:  $S_1$ ,  $S_2$ ,  $S_3$  are subset families of M,  $S_4$  is a non-empty subset family of M, and V, W are many sorted subsets indexed by M.

Let I be a non empty set, let M be a many sorted set indexed by I, let  $S_1$  be a subset family of M, and let i be an element of I. Then  $S_1(i)$  is a family of subsets of M(i).

One can prove the following propositions:

- (32) If  $i \in I$ , then  $S_1(i)$  is a family of subsets of M(i).
- (33) If  $A \in S_1$ , then A is a many sorted subset indexed by M.
- (34)  $S_1 \cup S_2$  is a subset family of M.
- (35)  $S_1 \cap S_2$  is a subset family of M.

- (36)  $S_1 \setminus A$  is a subset family of M.
- (37)  $S_1 \dot{-} S_2$  is a subset family of M.
- (38) If  $A \subseteq M$ , then  $\{A\}$  is a subset family of M.
- (39) If  $A \subseteq M$  and  $B \subseteq M$ , then  $\{A, B\}$  is a subset family of M.
- (40)  $\bigcup S_1 \subseteq M$ .

## 4. Intersection of a Family of Many Sorted Sets

Let us consider  $I, M, S_1$ . The functor  $\bigcap S_1$  yielding a many sorted set indexed by I is defined by:

(Def. 2)<sup>1</sup> For every set i such that  $i \in I$  there exists a family Q of subsets of M(i) such that  $Q = S_1(i)$  and  $(\bigcap S_1)(i) = \text{Intersect}(Q)$ .

Let us consider I, M,  $S_1$ . Then  $\bigcap S_1$  is a many sorted subset indexed by M. The following propositions are true:

- (41) If  $S_1 = \mathbf{0}_I$ , then  $\bigcap S_1 = M$ .
- (42)  $\bigcap S_4 \subseteq \bigcup S_4$ .
- (43) If  $A \in S_1$ , then  $\bigcap S_1 \subseteq A$ .
- (44) If  $\mathbf{0}_{I} \in S_{1}$ , then  $\bigcap S_{1} = \mathbf{0}_{I}$ .
- (45) Let Z, M be many sorted sets indexed by I and  $S_1$  be a non-empty subset family of M. Suppose that for every many sorted set  $Z_1$  indexed by I such that  $Z_1 \in S_1$  holds  $Z \subseteq Z_1$ . Then  $Z \subseteq \bigcap S_1$ .
- (46) If  $S_1 \subseteq S_2$ , then  $\bigcap S_2 \subseteq \bigcap S_1$ .
- (47) If  $A \in S_1$  and  $A \subseteq B$ , then  $\bigcap S_1 \subseteq B$ .
- (48) If  $A \in S_1$  and  $A \cap B = \mathbf{0}_I$ , then  $\bigcap S_1 \cap B = \mathbf{0}_I$ .
- (49) If  $S_3 = S_1 \cup S_2$ , then  $\bigcap S_3 = \bigcap S_1 \cap \bigcap S_2$ .
- (50) If  $S_1 = \{V\}$ , then  $\bigcap S_1 = V$ .
- (51) If  $S_1 = \{V, W\}$ , then  $\bigcap S_1 = V \cap W$ .
- (52) If  $A \in \bigcap S_1$ , then for every B such that  $B \in S_1$  holds  $A \in B$ .
- (53) Let A, M be many sorted sets indexed by I and  $S_1$  be a non-empty subset family of M. Suppose  $A \in M$  and for every many sorted set B indexed by I such that  $B \in S_1$  holds  $A \in B$ . Then  $A \in \bigcap S_1$ .

Let us consider I, M and let  $I_1$  be a subset family of M. We say that  $I_1$  is additive if and only if:

(Def. 3) For all A, B such that  $A \in I_1$  and  $B \in I_1$  holds  $A \cup B \in I_1$ .

We say that  $I_1$  is absolutely-additive if and only if:

(Def. 4) For every subset family F of M such that  $F \subseteq I_1$  holds  $\bigcup F \in I_1$ .

We say that  $I_1$  is multiplicative if and only if:

(Def. 5) For all A, B such that  $A \in I_1$  and  $B \in I_1$  holds  $A \cap B \in I_1$ .

We say that  $I_1$  is absolutely-multiplicative if and only if:

<sup>&</sup>lt;sup>1</sup> The definition (Def. 1) has been removed.

(Def. 6) For every subset family F of M such that  $F \subseteq I_1$  holds  $\bigcap F \in I_1$ .

We say that  $I_1$  is properly upper bound if and only if:

(Def. 7)  $M \in I_1$ .

We say that  $I_1$  is properly lower bound if and only if:

(Def. 8)  $\mathbf{0}_{I} \in I_{1}$ .

Let us consider I, M. Observe that there exists a subset family of M which is non-empty, additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper bound, and properly lower bound.

Let us consider I, M. Then  $2^M$  is an additive absolutely-additive multiplicative absolutely-multiplicative properly upper bound properly lower bound subset family of M.

Let us consider I, M. Note that every subset family of M which is absolutely-additive is also additive.

Let us consider I, M. Observe that every subset family of M which is absolutely-multiplicative is also multiplicative.

Let us consider I, M. Observe that every subset family of M which is absolutely-multiplicative is also properly upper bound.

Let us consider I, M. Note that every subset family of M which is properly upper bound is also non-empty.

Let us consider I, M. Note that every subset family of M which is absolutely-additive is also properly lower bound.

Let us consider I, M. One can verify that every subset family of M which is properly lower bound is also non-empty.

### REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg\_2.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc\_1.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct\_4.html.
- [7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset\_1.html.
- [8] Artur Korniłowicz. On the group of automorphisms of universal algebra and many sorted algebra. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/autalg 1.html.
- [9] Artur Korniłowicz. Definitions and basic properties of boolean and union of many sorted sets. *Journal of Formalized Mathematics*, 7, 1995. http://mizar.org/JFM/Vol7/mboolean.html.
- [10] Artur Korniłowicz. Extensions of mappings on generator set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/extens\_1.html.
- [11] Artur Korniłowicz. Some basic properties of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/pzfmisc1.html.
- [12] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg\_3.html.
- [13] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg\_1.html.
- [14] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg\_ 2.html.

- [15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre\_circ.html.
- [16] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam\_1.html.
- [17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor\_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [20] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg\_1. html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset\_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat\_1.html.

Received October 27, 1995

Published January 2, 2004