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The articlesl[18],[[5],[[211],[[16],[22],18],[[1],[[4],[[¥],[6],/[19],[[20],[[2],[12],[[1B3] [[14] 18] [[15],
[10], [27], [9], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules; G, H, i denote setsh, B, M denote many sorted sets
indexed byl, s1, S, s3 denote families of subsets bf v, w denote subsets ¢f andF denotes a
many sorted function indexed by
The schem®SFExFunaleals with a sed, many sorted set8, C indexed by4, and a ternary
predicateP, and states that:
There exists a many sorted functiBrirom B into C such that for every séif i € 4,
then there exists a functiohfrom B(i) into C(i) such thatf = F(i) and for every
setx such thak € B(i) holds?[f (x), X, ]
provided the following condition is met:
e For every set such that € 4 and for every sex such thak € B(i) there exists a set
y such thay € C(i) andP[y, X, i].
Next we state a number of propositions:

(1) If s1 #0, then Interseds;) C Us;.
(2) If Ge s, then Interseds;) C G.
(3) If 0 € s, then Intersecs;) = 0.

(4) For every subsef of | such that for every sef; such thatZ; € 5; holdsZ C Z; holds
Z C Intersects: ).

(5) If s # 0and for every se¥; such tha?Z; € s holdsG C Z;, thenG C Intersects; ).
(6) If GesandG C H,then Intersedt;) C H.

(7) If G e s andG missedH, then Intersegs; ) missesH.

(8) If s3=-s1Us, then Intersedss) = Intersects; ) N Intersectsy).

(9) If 3 ={v}, then Intersect;) = v.
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(10) If st = {v,w}, then Intersect;) = vnw.
(11) If A€ B, thenAis an element oB.

(12) For every non-empty many sorted Bandexed byl such thatA is an element oB holds
AcB.

(13) For every functiorf such thai € | andf = F (i) holds(rng F (k))(i) = rngf.
(14) For every functiorf such thai € | andf = F (i) holds(dom¢F (k))(i) = domf.

(15) For all many sorted functiors, G indexed byl holdsGoF is a many sorted function
indexed byl.

(16) LetAbe a non-empty many sorted set indexed lapndF be a many sorted function from
Ainto0,. ThenF =0,.

(17) If Aistransformable t® andF is a many sorted function frosinto B, then dom F (k) =
Aand rng F (k) C B.

2. FNITE MANY SORTED SETS

Let us considel. Observe that every many sorted set indexed Wjich is empty yielding is also
locally-finite.

Let us considef. Observe thaf) is empty yielding and locally-finite.

Let us considet, A. Note that there exists a many sorted subset indexeflizich is empty
yielding and locally-finite.

One can prove the following proposition

(18) If AC BandBiis locally-finite, thenA is locally-finite.

Let us consider and letA be a locally-finite many sorted set indexedibyNote that every many
sorted subset indexed Byis locally-finite.

Let us considet and letA, B be locally-finite many sorted sets indexed lbyOne can verify
thatAU B is locally-finite.

Let us considel, A and letB be a locally-finite many sorted set indexedlbyNote thatAN B is
locally-finite.

Let us considet, B and letA be a locally-finite many sorted set indexedIbyOne can verify
thatAnN B is locally-finite.

Let us considef, B and letA be a locally-finite many sorted set indexed IbyOne can check
thatA\ B is locally-finite.

Let us considel, F and letA be a locally-finite many sorted set indexedibyDbserve thaf ° A
is locally-finite.

Let us considel and letA, B be locally-finite many sorted sets indexedibybserve thafA, B]
is locally-finite.

Next we state three propositions:

(19) If Bis non-empty andA, B] is locally-finite, therA is locally-finite.
(20) If Ais non-empty andA, B] is locally-finite, therB is locally-finite.
(21) Ais locally-finite iff 2 is locally-finite.

Let us considet and letM be a locally-finite many sorted set indexed IbyNote that ' is
locally-finite.
One can prove the following four propositions:

(22) LetA be a non-empty many sorted set indexed bySuppos@éA is locally-finite and for
every many sorted sé indexed byl such thaMM € A holdsM is locally-finite. ThenJA is
locally-finite.
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(23) If JAs locally-finite, thenA is locally-finite and for everyl such thaiM € A holdsM is
locally-finite.

(24) If dom F(K) is locally-finite, then rngF (k) is locally-finite.

(25) Supposé C rng, F (k) and for every set and for every functionf such that €| and
f = F(i) holds f~1(A(i)) is finite. ThenA is locally-finite.

Let us considet and letA, B be locally-finite many sorted sets indexed by Observe that
MSFuncsA, B) is locally-finite.

Let us considet and letA, B be locally-finite many sorted sets indexed lbyOne can verify
thatA—-B is locally-finite.

In the sequek, Y, Z denote many sorted sets indexed by

The following propositions are true:

(26) Suppos« is locally-finite andX C [[Y, Z]]. Then there exisA, B such that is locally-finite
andA C Y andBiis locally-finite andB C Z andX C [[A, BJ.

(27) Suppos« is locally-finite andZ is locally-finite andX C [[Y,Z]. Then there existé such
thatA is locally-finite andA C Y andX C [[A,Z].

(28) LetM be a non-empty locally-finite many sorted set indexed bysuppose that for all
many sorted set8, B indexed byl such thatA € M andB € M holdsAC B orB C A. Then
there exists a many sorted seindexed byl such thaim € M and for every many sorted set
K indexed byl such thaK € M holdsm C K.

(29) LetM be a non-empty locally-finite many sorted set indexed bysuppose that for all
many sorted set8, B indexed byl such thatA € M andB € M holdsAC B orB C A. Then
there exists a many sorted seindexed byl such thatme M and for every many sorted set
K indexed byl such thaK € M holdsK C m.

(30) If Zis locally-finite andZ C rng, F (k), then there exist¥ such thaty C domy F (k) andY
is locally-finite and- °Y = Z.

3. A FAMILY OF SUBSETS OFMANY SORTED SETS

Let us considet, M. A subset family oM is a many sorted subset indexed B. 2

Let us considel, M. Note that there exists a subset familyMfwhich is non-empty.

Let us considet, M. Then 2! is a subset family of.

Let us considet, M. Observe that there exists a subset familywbfvhich is empty yielding
and locally-finite.

One can prove the following proposition

(31) 0O is an empty yielding locally-finite subset family bf.

Let us considel and letM be a locally-finite many sorted set indexedIbyObserve that there
exists a subset family dfl which is non-empty and locally-finite.

We adopt the following conventiorg;, S, Sz are subset families dfl, & is a non-empty subset
family of M, andV, W are many sorted subsets indexed\by

Let| be a non empty set, |& be a many sorted set indexed hytet S; be a subset family of
M, and leti be an element df. ThenS, (i) is a family of subsets df1(i).

One can prove the following propositions:

(32) Ifiel, thenS(i) is a family of subsets d¥1(i).

(33) If Ac S, thenAis a many sorted subset indexedMy
(34) S USis a subset family oM.

(35) S NS is asubset family oM.
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(36) S1\ Ais a subset family oM.

(37) S ~Sis a subset family oM.

(38) If AC M, then{A} is a subset family oM.

(39) IfAC M andBC M, then{A,B} is a subset family oM.
(40) UsscMm.

4. INTERSECTION OF AFAMILY OF MANY SORTED SETS

Let us considel, M, §. The functo S, yielding a many sorted set indexed bis defined by:

(Def. ZE] For every set such that € | there exists a famil) of subsets oM (i) such thaQ = S; (i)
and(NS1)(i) = IntersectQ).

Let us consider, M, §. Then S is a many sorted subset indexedMy
The following propositions are true:

(41) 1fS =0, thenNS = M.
(42) NS cUS.

(43) IfA€ S, then(S CA.
(44) If0 € S, thenNS =0.

(45) LetZ, M be many sorted sets indexed byand S, be a non-empty subset family 1.
Suppose that for every many sorted Zetndexed byl such thaz; € S holdsZ C Z;. Then
ZC NS

(46) IfS C S, thenNS C NS

(47) IfA€ S andAC B, thenNS; C B.

(48) IfAe S andAnNB=0,thenNSNB=0.

(49) fS=5US thenNS=NSNNS.

(50) If S, ={V},thennNS =V.

(51) 1fS ={V,W}, thenNS =V NW.

(52) If Ae NS, then for everyB such thaB € S; holdsA € B.

(53) LetA, M be many sorted sets indexed byand S, be a non-empty subset family 1.
SupposeA € M and for every many sorted sBtindexed byl such thatB € S holdsA € B.
ThenAeNS.

Let us considel, M and letl; be a subset family df1. We say that; is additive if and only if:
(Def. 3) For allA, B such thatA € I; andB € 13 holdsAUB € 1.
We say that; is absolutely-additive if and only if:
(Def. 4) For every subset family of M such that C |1 holds|JF € 1.
We say that; is multiplicative if and only if:
(Def. 5) For allA, Bsuch thatA € 1; andB € |1 holdsANB € I.

We say that; is absolutely-multiplicative if and only if:

1 The definition (Def. 1) has been removed.
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(Def. 6) For every subset family of M such that C I; holdsNF € I.
We say that; is properly upper bound if and only if:

(Def. 7) Mel;.
We say that; is properly lower bound if and only if:

(Def.8) 0 €.

Let us considel, M. Observe that there exists a subset familyMfwhich is non-empty,
additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper bound, and
properly lower bound.

Let us considet, M. Then 2 is an additive absolutely-additive multiplicative absolutely-
multiplicative properly upper bound properly lower bound subset familyl of

Let us considet, M. Note that every subset family & which is absolutely-additive is also
additive.

Let us considel, M. Observe that every subset familyfwhich is absolutely-multiplicative
is also multiplicative.

Let us considel, M. Observe that every subset family fwhich is absolutely-multiplicative
is also properly upper bound.

Let us considet, M. Note that every subset family & which is properly upper bound is also
non-empty.

Let us considel, M. Note that every subset family & which is absolutely-additive is also
properly lower bound.

Let us considef, M. One can verify that every subset family lgf which is properly lower
bound is also non-empty.
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