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Summary. The graph induced by a many sorted signature is defined as follows: the
vertices are the symbols of sorts, and if a sorts is an argument of an operation with result sortt,
then a directed edge[s, t] is in the graph. The key lemma states relationship between the depth
of elements of a free many sorted algebra over a signature and the length of directed chains
in the graph induced by the signature. Then we prove that a monotonic many sorted signature
(every finitely-generated algebra over it is locally-finite) induces awell-foundedgraph. The
converse holds with an additional assumption that the signature is finitely operated, i.e. there
is only a finite number of operations with the given result sort.
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The articles [21], [12], [26], [25], [1], [22], [27], [9], [11], [10], [14], [2], [4], [5], [6], [19], [3],
[15], [16], [23], [24], [8], [20], [18], [17], [13], and [7] provide the notation and terminology for
this paper.

In this papern is a natural number.
Let Sbe a many sorted signature. The functor InducedEdges(S) yielding a set is defined by the

condition (Def. 1).

(Def. 1) Let x be a set. Thenx ∈ InducedEdges(S) if and only if there exist setso1, v such that
x = 〈〈o1, v〉〉 ando1 ∈ the operation symbols ofS andv ∈ the carrier ofS and there exists a
natural numbern and there exists an elementa1 of (the carrier ofS)∗ such that (the arity of
S)(o1) = a1 andn∈ doma1 anda1(n) = v.

Next we state the proposition

(1) For every many sorted signatureSholds InducedEdges(S)⊆ [: the operation symbols ofS,
the carrier ofS:].

Let S be a many sorted signature. The functor InducedSource(S) yielding a function from
InducedEdges(S) into the carrier ofS is defined as follows:

(Def. 2) For every setesuch thate∈ InducedEdges(S) holds(InducedSource(S))(e) = e2.

The functor InducedTarget(S) yields a function from InducedEdges(S) into the carrier ofS and is
defined as follows:
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(Def. 3) For every sete such thate∈ InducedEdges(S) holds(InducedTarget(S))(e) = (the result
sort ofS)(e1).

Let Sbe a non empty many sorted signature. The functor InducedGraph(S) yields a graph and
is defined by:

(Def. 4) InducedGraph(S)= 〈the carrier ofS, InducedEdges(S), InducedSource(S), InducedTarget(S)〉.

We now state several propositions:

(2) Let Sbe a non void non empty many sorted signature,X be a non-empty many sorted set
indexed by the carrier ofS, v be a sort symbol ofS, and givenn. Suppose 1≤ n. Then there
exists an elementt of (the sorts of Free(X))(v) such that depth(t) = n if and only if there exists
a directed chainc of InducedGraph(S) such that lenc = n and(vertex-seq(c))(lenc+1) = v.

(3) For every void non empty many sorted signatureS holds S is monotonic iff
InducedGraph(S) is well-founded.

(4) For every non void non empty many sorted signatureS such thatS is monotonic holds
InducedGraph(S) is well-founded.

(5) Let Sbe a non void non empty many sorted signature andX be a non-empty locally-finite
many sorted set indexed by the carrier ofS. SupposeS is finitely operated. Letn be a
natural number andv be a sort symbol ofS. Then{t; t ranges over elements of (the sorts of
Free(X))(v): depth(t)≤ n} is finite.

(6) Let S be a non void non empty many sorted signature. IfS is finitely operated and
InducedGraph(S) is well-founded, thenS is monotonic.
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