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Summary. This article contains definitions of two category structures: the category
of many sorted signatures and the category of many sorted algebras. Some facts about these
structures are proved.

MML Identifier: MSINST_1.

WWW: http://mizar.org/JFM/Vol8/msinst_1.html

The articles[[15],[[8],[1211],[[20],[122],[15],[16],[128].[[7],[[0].[[1],14],[[15], 2], [17],[18],[[18],[[12],
[19], [14], [11], [3], and [10] provide the notation and terminology for this paper.

1. CATEGORY OFMANY SORTED SIGNATURES

In this papelA denotes a non empty s&denotes a non void non empty many sorted signature, and
x denotes a set.

Let us consideA. The functor MSSC&#\) yielding a strict non empty category structure is
defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of MSSCéA) = MSS-setA),

(i) for all elementsi, j of MSS-setA) holds (the arrows of MSSCg))(i, j) =
MSS-morplii, j), and

(i)  for all objectsi, j, k of MSSCatA) such that € MSS-sefA) and j € MSS-setA) and
k € MSS-setA) and for all functionsfi, fz, g1, g2 such that(f;, f2) € (the arrows of
MSSCatA))(i, j) and (g1, g2) € (the arrows of MSSC&R))(j, k) holds (the composition
of MSSCatA))(i, J, k) ({91, G2}, (f1, f2)) = (91~ f1, G2 f2).

Let us consideA. One can verify that MSSCEgh) is transitive and associative and has units.
We now state the proposition

(1) For every categorg such thaC = MSSCatA) holds every object of is a non empty non
void many sorted signature.

Let us conside&. Note that there exists an algebra o8avhich is strict and feasible.
Let us conside§, A. The functor MSAlgset S A) is defined by the condition (Def. 2).

(Def. 2) xe MSAIlg_se{S A) if and only if there exists a strict feasible algelMaover Ssuch that
x= M and for every componef of the sorts oM holdsC C A.

Let us conside§, A. Note that MSAlgse{S A) is non empty.
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2. CATEGORY OFMANY SORTED ALGEBRAS

In the sequeb is an operation symbol &
Next we state four propositions:

(2) Let x be an algebra oveB Supposex € MSAIg_se{S A). Then the sorts ok €
(2A)the carrier ofS and the characteristics &fc ((N%A) ;}A)the operation symbols cﬂi.

(3) LetUs1, U, be algebras ove®. Suppose the sorts bk are transformable to the sortsld$
and Arggo,U1) # 0. Then Arggo,Uy) # 0.

(4) LetU1, U, Uz be feasible algebras ovErF be a many sorted function frobh, intoU,, G
be a many sorted function frobl into Uz, andx be an element of Args,U;). Suppose that

(i) Args(o,Uy) #0,
(ii) the sorts ofU; are transformable to the sortslaf, and
(iii)  the sorts ofU, are transformable to the sortsldf.
Then there exists a many sorted functi@a from U; into Uz such thatG; = GoF and
Gaftx = GH(F#Xx).
(5) LetUq, Uy, Uz be feasible algebras ov& F be a many sorted function froby into Uy,
andG be a many sorted function froblp into Us. Suppose that
(i) the sorts olJ; are transformable to the sortsldj,
(i) the sorts ofU, are transformable to the sortsldj,
(i)  F is a homomorphism df; into Uy, and
(iv) Gisahomomorphism dfl; into Us.

Then there exists a many sorted funct®nfrom U; into Uz such thaiG; = GoF andG; is
a homomorphism df); into Us.

Let us considelS, A and leti, j be sets. Let us assume that MSAIlg_se{SA) and j €
MSAIg_se{S A). The functor MSAlgmorph(S A/i, j) is defined by the condition (Def. 3).

(Def. 3) x e MSAIlg_morph S A,i, j) if and only if there exist strict feasible algebrists N overS
and there exists a many sorted functioftom M into N such thaM =i andN = j andf = x
and the sorts o are transformable to the sortshfand f is a homomorphism dfl into N.

Let us conside§, A. The functor MSAIgCa(S, A) yielding a strict non empty category structure
is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of MSAIgCd8, A) = MSAIg_se(S A),
(i) for all elementsi, j of MSAlg_se{S A) holds (the arrows of MSAIgC&8 A))(i, j) =
MSAIlg_-morphS,A;i, j), and
(iii)  for all objectsi, j, k of MSAIgCatS A) and for all function yielding functions$, g such

that f € (the arrows of MSAIgCAS, A))(i, j) andg € (the arrows of MSAIgCAS A))(j, k)
holds (the composition of MSAIgCES, A)) (i, j, k)(g, f) =go f.

Let us conside, A. One can verify that MSAIgC&S8 A) is transitive and associative and has
units.
We now state the proposition

(6) For every categorZ such thatC = MSAIgCatS A) holds every object o€ is a strict
feasible algebra oves.
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