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The articles [18], [12], [23], [21], [24], [10], [8], [11], [14], [1], [4], [16], [2], [22], [3], [13], [5],
[6], [7], [19], [20], [9], [15], and [17] provide the notation and terminology for this paper.

1. TERMS OVER ASIGNATURE AND OVER AN ALGEBRA

Let I be a non empty set, letX be a non-empty many sorted set indexed byI , and leti be an element
of I . Observe thatX(i) is non empty.

In the sequelSdenotes a non void non empty many sorted signature andV denotes a non-empty
many sorted set indexed by the carrier ofS.

Let us considerS and letV be a many sorted set indexed by the carrier ofS. The functor
S-Terms(V) yielding a subset of FinTrees(the carrier of DTConMSA(V)) is defined by:

(Def. 1) S-Terms(V) = TS(DTConMSA(V)).

Let us considerS, V. Note thatS-Terms(V) is non empty.
Let us considerS, V. A term ofSoverV is an element ofS-Terms(V).
In the sequelA is an algebra overSandt is a term ofSoverV.
Let us considerS, V and leto be an operation symbol ofS. Then Sym(o,V) is a nonterminal of

DTConMSA(V).
Let us considerS, V and lets1 be a nonterminal of DTConMSA(V). A finite sequence of

elements ofS-Terms(V) is said to be an argument sequence ofs1 if:

(Def. 2) It is a subtree sequence joinable bys1.

We now state the proposition

(1) Let o be an operation symbol ofS and a be a finite sequence. Then〈〈o, the carrier of
S〉〉-tree(a) ∈ S-Terms(V) and a is decorated tree yielding if and only ifa is an argument
sequence of Sym(o,V).

The schemeTermInddeals with a non void non empty many sorted signatureA , a non-empty
many sorted setB indexed by the carrier ofA , and a unary predicateP , and states that:

1This article has been prepared during the visit of the author in Nagano in Summer 1994.
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For every termt of A overB holdsP [t]
provided the following conditions are satisfied:

• For every sort symbols of A and for every elementv of B(s) holdsP [the root tree
of 〈〈v, s〉〉], and

• Let o be an operation symbol ofA and p be an argument sequence of Sym(o,B).
Suppose that for every termt of A overB such thatt ∈ rngp holdsP [t]. ThenP [〈〈o,
the carrier ofA〉〉-tree(p)].

Let us considerS, A, V. A term ofA overV is a term ofSover (the sorts ofA)∪V.
Let us considerS, A, V and leto be an operation symbol ofS. An argument sequence ofo, A,

andV is an argument sequence of Sym(o, (the sorts ofA)∪V).
The schemeCTermInddeals with a non void non empty many sorted signatureA , a non-empty

algebraB overA , a non-empty many sorted setC indexed by the carrier ofA , and a unary predicate
P , and states that:

For every termt of B overC holdsP [t]
provided the parameters meet the following requirements:

• For every sort symbols of A and for every elementx of (the sorts ofB)(s) holds
P [the root tree of〈〈x, s〉〉],

• For every sort symbols of A and for every elementv of C (s) holdsP [the root tree
of 〈〈v, s〉〉], and

• Let o be an operation symbol ofA and p be an argument sequence ofo, B, and
C . Suppose that for every termt of B over C such thatt ∈ rngp holdsP [t]. Then
P [Sym(o, (the sorts ofB)∪C )-tree(p)].

Let us considerS, V, t and letp be a node oft. Thent(p) is a symbol of DTConMSA(V).
Let us considerS, V. Note that every term ofSoverV is finite.
The following propositions are true:

(2)(i) There exists a sort symbolsof Sand there exists an elementv of V(s) such thatt( /0) = 〈〈v,
s〉〉, or

(ii) t( /0) ∈ [: the operation symbols ofS, {the carrier ofS} :].

(3) Let t be a term ofA overV. Then

(i) there exists a sort symbolsof Sand there exists a setx such thatx∈ (the sorts ofA)(s) and
t( /0) = 〈〈x, s〉〉, or

(ii) there exists a sort symbols of Sand there exists an elementv of V(s) such thatt( /0) = 〈〈v,
s〉〉, or

(iii) t( /0) ∈ [: the operation symbols ofS, {the carrier ofS} :].

(4) For every sort symbols of Sand for every elementv of V(s) holds the root tree of〈〈v, s〉〉 is
a term ofSoverV.

(5) For every sort symbols of Sand for every elementv of V(s) such thatt( /0) = 〈〈v, s〉〉 holds
t = the root tree of〈〈v, s〉〉.

(6) Let s be a sort symbol ofSandx be a set. Supposex∈ (the sorts ofA)(s). Then the root
tree of〈〈x, s〉〉 is a term ofA overV.

(7) Let t be a term ofA overV, sbe a sort symbol ofS, andx be a set. Ifx∈ (the sorts ofA)(s)
andt( /0) = 〈〈x, s〉〉, thent = the root tree of〈〈x, s〉〉.

(8) For every sort symbols of Sand for every elementv of V(s) holds the root tree of〈〈v, s〉〉 is
a term ofA overV.

(9) Let t be a term ofA over V, s be a sort symbol ofS, andv be an element ofV(s). If
t( /0) = 〈〈v, s〉〉, thent = the root tree of〈〈v, s〉〉.

(10) Leto be an operation symbol ofS. Supposet( /0) = 〈〈o, the carrier ofS〉〉. Then there exists
an argument sequencea of Sym(o,V) such thatt = 〈〈o, the carrier ofS〉〉-tree(a).
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Let us considerS, let A be a non-empty algebra overS, let us considerV, let s be a sort symbol
of S, and letx be an element of (the sorts ofA)(s). The functorxA,V yields a term ofA overV and
is defined as follows:

(Def. 3) xA,V = the root tree of〈〈x, s〉〉.

Let us considerS, A, V, let sbe a sort symbol ofS, and letv be an element ofV(s). The functor
vA yields a term ofA overV and is defined by:

(Def. 4) vA = the root tree of〈〈v, s〉〉.

Let us considerS, V, let s1 be a nonterminal of DTConMSA(V), and letp be an argument
sequence ofs1. Thens1-tree(p) is a term ofSoverV.

The schemeTermInd2deals with a non void non empty many sorted signatureA , a non-empty
algebraB overA , a non-empty many sorted setC indexed by the carrier ofA , and a unary predicate
P , and states that:

For every termt of B overC holdsP [t]
provided the parameters meet the following conditions:

• For every sort symbols of A and for every elementx of (the sorts ofB)(s) holds
P [xB,C ],

• For every sort symbols of A and for every elementv of C (s) holdsP [vB ], and
• Let o be an operation symbol ofA and p be an argument sequence of Sym(o, (the

sorts ofB)∪C ). Suppose that for every termt of B overC such thatt ∈ rngp holds
P [t]. ThenP [Sym(o, (the sorts ofB)∪C )-tree(p)].

2. SORT OF A TERM

We now state three propositions:

(11) For every termt of SoverV there exists a sort symbols of Ssuch thatt ∈ FreeSort(V,s).

(12) For every sort symbols of Sholds FreeSort(V,s)⊆ S-Terms(V).

(13) S-Terms(V) =
⋃

FreeSorts(V).

Let us considerS, V, t. The sort oft yields a sort symbol ofSand is defined by:

(Def. 5) t ∈ FreeSort(V, the sort oft).

The following propositions are true:

(14) Lets be a sort symbol ofSandv be an element ofV(s). If t = the root tree of〈〈v, s〉〉, then
the sort oft = s.

(15) Lett be a term ofA overV, s be a sort symbol ofS, andx be a set. Supposex∈ (the sorts
of A)(s) andt = the root tree of〈〈x, s〉〉. Then the sort oft = s.

(16) Lett be a term ofA overV, sbe a sort symbol ofS, andv be an element ofV(s). If t = the
root tree of〈〈v, s〉〉, then the sort oft = s.

(17) Leto be an operation symbol ofS. Supposet( /0) = 〈〈o, the carrier ofS〉〉. Then the sort of
t = the result sort ofo.

(18) LetA be a non-empty algebra overS, s be a sort symbol ofS, andx be an element of (the
sorts ofA)(s). Then the sort ofxA,V = s.

(19) For every sort symbols of Sand for every elementv of V(s) holds the sort ofvA = s.

(20) Leto be an operation symbol ofSandp be an argument sequence of Sym(o,V). Then the
sort of ( Sym(o,V)-tree(p) qua term ofSoverV) = the result sort ofo.
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3. ARGUMENT SEQUENCE

Next we state several propositions:

(21) Leto be an operation symbol ofSanda be a finite sequence of elements ofS-Terms(V).
Thena is an argument sequence of Sym(o,V) if and only if Sym(o,V)⇒ the roots ofa.

(22) Let o be an operation symbol ofS anda be an argument sequence of Sym(o,V). Then
lena = lenArity(o) and doma = domArity(o) and for every natural numberi such thati ∈
doma holdsa(i) is a term ofSoverV.

(23) Let o be an operation symbol ofS, a be an argument sequence of Sym(o,V), and i be a
natural number. Supposei ∈ doma. Let t be a term ofSoverV. Supposet = a(i). Then

(i) t = (a qua finite sequence of elements ofS-Terms(V) qua non empty set)i ,

(ii) the sort oft = Arity(o)(i), and

(iii) the sort oft = Arity(o)i .

(24) Leto be an operation symbol ofSanda be a finite sequence. Suppose that

(i) lena = lenArity(o) or doma = domArity(o), and

(ii) for every natural numberi such thati ∈ doma there exists a termt of SoverV such that
t = a(i) and the sort oft = Arity(o)(i) or for every natural numberi such thati ∈ doma there
exists a termt of SoverV such thatt = a(i) and the sort oft = Arity(o)i .

Thena is an argument sequence of Sym(o,V).

(25) Leto be an operation symbol ofSanda be a finite sequence of elements ofS-Terms(V).
Suppose that

(i) lena = lenArity(o) or doma = domArity(o), and

(ii) for every natural numberi such thati ∈ doma and for every termt of SoverV such that
t = a(i) holds the sort oft = Arity(o)(i) or for every natural numberi such thati ∈ doma and
for every termt of SoverV such thatt = a(i) holds the sort oft = Arity(o)i .

Thena is an argument sequence of Sym(o,V).

(26) LetSbe a non void non empty many sorted signature andV1, V2 be non-empty many sorted
sets indexed by the carrier ofS. If V1⊆V2, then every term ofSoverV1 is a term ofSoverV2.

(27) LetSbe a non void non empty many sorted signature,A be an algebra overS, andV be a
non-empty many sorted set indexed by the carrier ofS. Then every term ofSoverV is a term
of A overV.

4. COMPOUND TERMS

Let S be a non void non empty many sorted signature and letV be a non-empty many sorted set
indexed by the carrier ofS. A term ofSoverV is called a compound term ofSoverV if:

(Def. 6) It( /0) ∈ [: the operation symbols ofS, {the carrier ofS} :].

Let Sbe a non void non empty many sorted signature and letV be a non-empty many sorted set
indexed by the carrier ofS. A non empty subset ofS-Terms(V) is said to be a set with a compound
term ofSoverV if:

(Def. 7) There exists a compound termt of SoverV such thatt ∈ it.

The following propositions are true:

(28) If t is not root, thent is a compound term ofSoverV.

(29) For every nodep of t holdst�p is a term ofSoverV.

Let S be a non void non empty many sorted signature, letV be a non-empty many sorted set
indexed by the carrier ofS, let t be a term ofSoverV, and letp be a node oft. Thent�p is a term
of SoverV.
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5. EVALUATION OF TERMS

Let Sbe a non void non empty many sorted signature and letA be an algebra overS. A non-empty
many sorted set indexed by the carrier ofS is said to be a variables family ofA if:

(Def. 8) It misses the sorts ofA.

We now state the proposition

(30) LetV be a variables family ofA, s be a sort symbol ofS, andx be a set. Ifx∈ (the sorts of
A)(s), then for every elementv of V(s) holdsx 6= v.

Let Sbe a non void non empty many sorted signature, letA be a non-empty algebra overS, let
V be a non-empty many sorted set indexed by the carrier ofS, let t be a term ofA overV, let f be a
many sorted function fromV into the sorts ofA, and letv1 be a finite decorated tree. We say thatv1

is an evaluation oft w.r.t. f if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) domv1 = domt, and

(ii) for every nodep of v1 holds for every sort symbols of Sand for every elementv of V(s)
such thatt(p) = 〈〈v, s〉〉 holdsv1(p) = f (s)(v) and for every sort symbols of Sand for every
elementx of (the sorts ofA)(s) such thatt(p) = 〈〈x, s〉〉 holdsv1(p) = x and for every operation
symbolo of Ssuch thatt(p) = 〈〈o, the carrier ofS〉〉 holdsv1(p) = (Den(o,A))(succ(v1, p)).

For simplicity, we follow the rules:S denotes a non void non empty many sorted signature,A
denotes a non-empty algebra overS, V denotes a variables family ofA, t denotes a term ofA over
V, and f denotes a many sorted function fromV into the sorts ofA.

The following propositions are true:

(31) Letsbe a sort symbol ofSandx be an element of (the sorts ofA)(s). Supposet = the root
tree of〈〈x, s〉〉. Then the root tree ofx is an evaluation oft w.r.t. f .

(32) Letsbe a sort symbol ofSandv be an element ofV(s). Supposet = the root tree of〈〈v, s〉〉.
Then the root tree off (s)(v) is an evaluation oft w.r.t. f .

(33) Leto be an operation symbol ofS, p be an argument sequence ofo, A, andV, andq be a
decorated tree yielding finite sequence. Suppose that

(i) lenq = lenp, and

(ii) for every natural numberi and for every termt of A overV such thati ∈ domp andt = p(i)
there exists a finite decorated treev1 such thatv1 = q(i) andv1 is an evaluation oft w.r.t. f .

Then there exists a finite decorated treev1 such thatv1 = (Den(o,A))(the roots ofq)-tree(q)
andv1 is an evaluation of Sym(o, (the sorts ofA)∪V)-tree(p) qua term ofA overV w.r.t. f .

(34) Lett be a term ofA overV ande be a finite decorated tree. Supposee is an evaluation oft
w.r.t. f . Let p be a node oft andn be a node ofe. If n = p, thene�n is an evaluation oft�p
w.r.t. f .

(35) Leto be an operation symbol ofS, p be an argument sequence ofo, A, andV, andv1 be a
finite decorated tree. Supposev1 is an evaluation of Sym(o, (the sorts ofA)∪V)-tree(p) qua
term ofA overV w.r.t. f . Then there exists a decorated tree yielding finite sequenceq such
that

(i) lenq = lenp,

(ii) v1 = (Den(o,A))(the roots ofq)-tree(q), and

(iii) for every natural numberi and for every termt of A overV such thati ∈ domp andt = p(i)
there exists a finite decorated treev1 such thatv1 = q(i) andv1 is an evaluation oft w.r.t. f .

(36) There exists a finite decorated tree which is an evaluation oft w.r.t. f .
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(37) Lete1, e2 be finite decorated trees. Supposee1 is an evaluation oft w.r.t. f ande2 is an
evaluation oft w.r.t. f . Thene1 = e2.

(38) Letv1 be a finite decorated tree. Supposev1 is an evaluation oft w.r.t. f . Thenv1( /0)∈ (the
sorts ofA)(the sort oft).

Let Sbe a non void non empty many sorted signature, letA be a non-empty algebra overS, let
V be a variables family ofA, let t be a term ofA overV, and letf be a many sorted function fromV
into the sorts ofA. The functort @ f yielding an element of (the sorts ofA)(the sort oft) is defined
by:

(Def. 10) There exists a finite decorated treev1 such thatv1 is an evaluation oft w.r.t. f andt @ f =
v1( /0).

In the sequelt is a term ofA overV.
We now state several propositions:

(39) For every finite decorated treev1 such thatv1 is an evaluation oft w.r.t. f holdst @ f =
v1( /0).

(40) Letv1 be a finite decorated tree. Supposev1 is an evaluation oft w.r.t. f . Let p be a node
of t. Thenv1(p) = t�p@ f .

(41) For every sort symbolsof Sand for every elementx of (the sorts ofA)(s) holdsxA,V
@ f = x.

(42) For every sort symbols of Sand for every elementv of V(s) holdsvA
@ f = f (s)(v).

(43) Leto be an operation symbol ofS, p be an argument sequence ofo, A, andV, andq be a
finite sequence. Suppose that

(i) lenq = lenp, and

(ii) for every natural numberi such thati ∈ domp and for every termt of A overV such that
t = p(i) holdsq(i) = t @ f .

Then(Sym(o, (the sorts ofA)∪V)-tree(p) qua term ofA overV) @ f = (Den(o,A))(q).
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