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Summary. This article introduces the construction of an inverse limit of many sorted
algebras. A few preliminary notions such as an ordered family of many sorted algebras and a
binding of family are formulated. Definitions of a set of many sorted signatures and a set of
signature morphisms are also given.

MML Identifier: MSALIMIT.
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The articles [17], [11], [23], [18], [24], [8], [26], [9], [5], [22], [12], [19], [25], [10], [2], [7], [1],
[3], [20], [15], [21], [6], [14], [16], [4], and [13] provide the notation and terminology for this paper.

1. INVERSEL IMITS OF MANY SORTED ALGEBRAS

We follow the rules:P denotes a non empty poset,i, j, k denote elements ofP, andSdenotes a non
void non empty many sorted signature.

Let I be a non empty set, let us considerS, let A1 be an algebra family ofI overS, let i be an
element ofI , and leto be an operation symbol ofS. Note that(OPER(A1))(i)(o) is function-like
and relation-like.

Let I be a non empty set, let us considerS, let A1 be an algebra family ofI overS, and letsbe a
sort symbol ofS. One can verify that(SORTS(A1))(s) is functional.

Let us considerP, S. An algebra family of the carrier ofP over S is said to be a family of
algebras overSordered byP if it satisfies the condition (Def. 1).

(Def. 1) There exists a many sorted functionF indexed by the internal relation ofP such that for all
i, j, k if i ≥ j and j ≥ k, then there exists a many sorted functionf1 from it(i) into it( j) and
there exists a many sorted functionf2 from it( j) into it(k) such thatf1 = F( j, i) and f2 = F(k,
j) andF(k, i) = f2◦ f1 and f1 is a homomorphism of it(i) into it( j).

In the sequelO1 is a family of algebras overSordered byP.
Let us considerP, S, O1. A many sorted function indexed by the internal relation ofP is said to

be a binding ofO1 if it satisfies the condition (Def. 2).

(Def. 2) Let giveni, j, k. Supposei ≥ j and j ≥ k. Then there exists a many sorted functionf1 from
O1(i) into O1( j) and there exists a many sorted functionf2 from O1( j) into O1(k) such that
f1 = it( j, i) and f2 = it(k, j) and it(k, i) = f2 ◦ f1 and f1 is a homomorphism ofO1(i) into
O1( j).

Let us considerP, S, O1, let B be a binding ofO1, and let us consideri, j. Let us assume that
i ≥ j. The functor bind(B, i, j) yielding a many sorted function fromO1(i) into O1( j) is defined by:

(Def. 3) bind(B, i, j) = B( j, i).
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In the sequelB is a binding ofO1.
The following proposition is true

(1) If i ≥ j and j ≥ k, then bind(B, j,k)◦bind(B, i, j) = bind(B, i,k).

Let us considerP, S, O1 and letI1 be a binding ofO1. We say thatI1 is normalized if and only
if:

(Def. 4) For everyi holdsI1(i, i) = idthe sorts ofO1(i).

One can prove the following proposition

(2) Let givenP, S, O1, B, i, j. Supposei ≥ j. Let f be a many sorted function fromO1(i) into
O1( j). If f = bind(B, i, j), then f is a homomorphism ofO1(i) into O1( j).

Let us considerP, S, O1, B. The functor Normalized(B) yielding a binding ofO1 is defined by:

(Def. 5) For alli, j such thati≥ j holds(Normalized(B))( j, i)= ( j = i→ idthe sorts ofO1(i),bind(B, i, j)◦
idthe sorts ofO1(i)).

The following proposition is true

(3) For all i, j such thati ≥ j andi 6= j holdsB( j, i) = (Normalized(B))( j, i).

Let us considerP, S, O1, B. One can check that Normalized(B) is normalized.
Let us considerP, S, O1. One can verify that there exists a binding ofO1 which is normalized.
The following proposition is true

(4) For every normalized bindingN1 of O1 and for all i, j such that i ≥ j holds
(Normalized(N1))( j, i) = N1( j, i).

Let us considerP, S, O1 and letB be a binding ofO1. The functor lim
←−

B yielding a strict

subalgebra of∏O1 is defined by the condition (Def. 6).

(Def. 6) Lets be a sort symbol ofSand f be an element of(SORTS(O1))(s). Then f ∈ (the sorts
of lim
←−

B)(s) if and only if for all i, j such thati ≥ j holds(bind(B, i, j))(s)( f (i)) = f ( j).

Next we state the proposition

(5) Let D1 be a discrete non empty poset, givenS, O1 be a family of algebras overSordered
by D1, andB be a normalized binding ofO1. Then lim

←−
B = ∏O1.

2. SETS AND MORPHISMS OFMANY SORTED SIGNATURES

In the sequelx denotes a set andA denotes a non empty set.
Let X be a set. We say thatX is MSS-membered if and only if:

(Def. 7) If x∈ X, thenx is a strict non empty non void many sorted signature.

One can check that there exists a set which is non empty and MSS-membered.
The strict many sorted signature TrivialMSSign is defined as follows:

(Def. 8) TrivialMSSign is empty and void.

Let us note that TrivialMSSign is empty and void.
One can check that there exists a many sorted signature which is strict, empty, and void.
The following proposition is true

(6) Let Sbe a void many sorted signature. Then idthe carrier ofS and idthe operation symbols ofS form
morphism betweenSandS.
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Let us considerA. The functor MSS-set(A) is defined by the condition (Def. 9).

(Def. 9) x∈MSS-set(A) if and only if there exists a strict non empty non void many sorted signature
Ssuch thatx = Sand the carrier ofS⊆ A and the operation symbols ofS⊆ A.

Let us considerA. Observe that MSS-set(A) is non empty and MSS-membered.
Let A be a non empty MSS-membered set. We see that the element ofA is a strict non empty

non void many sorted signature.
Let S1, S2 be many sorted signatures. The functor MSS-morph(S1,S2) is defined as follows:

(Def. 10) x∈MSS-morph(S1,S2) iff there exist functionsf , g such thatx = 〈〈 f , g〉〉 and f andg form
morphism betweenS1 andS2.
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[12] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

[13] Adam Grabowski. On the category of posets.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/orders_
3.html.

[14] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras.Journal of Formalized Mathematics, 6, 1994. http://mizar.
org/JFM/Vol6/msualg_3.html.

[15] Beata Madras. Product of family of universal algebras.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/Vol5/
pralg_1.html.

[16] Beata Madras. Products of many sorted algebras.Journal of Formalized Mathematics, 6, 1994.http://mizar.org/JFM/Vol6/pralg_
2.html.

[17] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[18] Andrzej Trybulec. Tuples, projections and Cartesian products.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/
Vol1/mcart_1.html.

[19] Andrzej Trybulec. Function domains and Frænkel operator.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/
Vol2/fraenkel.html.

[20] Andrzej Trybulec. Many-sorted sets.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/Vol5/pboole.html.

[21] Andrzej Trybulec. Many sorted algebras.Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
html.

[22] Wojciech A. Trybulec. Partially ordered sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/orders_
1.html.

[23] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

http://mizar.org/JFM/Vol2/funct_5.html
http://mizar.org/JFM/Vol2/funct_5.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol3/funct_6.html
http://mizar.org/JFM/Vol3/funct_6.html
http://mizar.org/JFM/Vol7/pua2mss1.html
http://mizar.org/JFM/Vol7/pua2mss1.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol6/msualg_2.html
http://mizar.org/JFM/Vol6/msualg_2.html
http://mizar.org/JFM/Vol1/binop_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol8/orders_3.html
http://mizar.org/JFM/Vol8/orders_3.html
http://mizar.org/JFM/Vol6/msualg_3.html
http://mizar.org/JFM/Vol6/msualg_3.html
http://mizar.org/JFM/Vol5/pralg_1.html
http://mizar.org/JFM/Vol5/pralg_1.html
http://mizar.org/JFM/Vol6/pralg_2.html
http://mizar.org/JFM/Vol6/pralg_2.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol2/fraenkel.html
http://mizar.org/JFM/Vol2/fraenkel.html
http://mizar.org/JFM/Vol5/pboole.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/subset_1.html


INVERSE LIMITS OF MANY SORTED ALGEBRAS 4

[24] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

[25] Edmund Woronowicz. Relations defined on sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
relset_1.html.

[26] Edmund Woronowicz and Anna Zalewska. Properties of binary relations.Journal of Formalized Mathematics, 1, 1989.http://mizar.
org/JFM/Vol1/relat_2.html.

Received June 11, 1996

Published January 2, 2004

http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relat_2.html
http://mizar.org/JFM/Vol1/relat_2.html

	inverse limits of many sorted algebras By adam grabowski

