Inverse Limits of Many Sorted Algebras

Adam Grabowski
Warsaw University
Białystok

Abstract

Summary. This article introduces the construction of an inverse limit of many sorted algebras. A few preliminary notions such as an ordered family of many sorted algebras and a binding of family are formulated. Definitions of a set of many sorted signatures and a set of signature morphisms are also given.

MML Identifier: MSALIMIT.
WWW: http://mizar.org/JFM/Vol8/msalimit.html

The articles [17], [11], [23], [18], [24], [8], [26], [9], [5], [22], [12], [19], [25], [10], [2], [7], [1], [3], [20], [15], [21], [6], [14], [16], [4], and [13] provide the notation and terminology for this paper.

1. Inverse Limits of Many Sorted Algebras

We follow the rules: P denotes a non empty poset, i, j, k denote elements of P, and S denotes a non void non empty many sorted signature.

Let I be a non empty set, let us consider S, let A_{1} be an algebra family of I over S, let i be an element of I, and let o be an operation symbol of S. Note that $\left(\operatorname{OPER}\left(A_{1}\right)\right)(i)(o)$ is function-like and relation-like.

Let I be a non empty set, let us consider S, let A_{1} be an algebra family of I over S, and let s be a sort symbol of S. One can verify that $\left(\operatorname{SORTS}\left(A_{1}\right)\right)(s)$ is functional.

Let us consider P, S. An algebra family of the carrier of P over S is said to be a family of algebras over S ordered by P if it satisfies the condition (Def. 1).
(Def. 1) There exists a many sorted function F indexed by the internal relation of P such that for all i, j, k if $i \geq j$ and $j \geq k$, then there exists a many sorted function f_{1} from it (i) into it (j) and there exists a many sorted function f_{2} from $\operatorname{it}(j) \operatorname{into} \operatorname{it}(k)$ such that $f_{1}=F(j, i)$ and $f_{2}=F(k$, $j)$ and $F(k, i)=f_{2} \circ f_{1}$ and f_{1} is a homomorphism of it (i) into $\operatorname{it}(j)$.

In the sequel O_{1} is a family of algebras over S ordered by P.
Let us consider P, S, O_{1}. A many sorted function indexed by the internal relation of P is said to be a binding of O_{1} if it satisfies the condition (Def. 2).
(Def. 2) Let given i, j, k. Suppose $i \geq j$ and $j \geq k$. Then there exists a many sorted function f_{1} from $O_{1}(i)$ into $O_{1}(j)$ and there exists a many sorted function f_{2} from $O_{1}(j)$ into $O_{1}(k)$ such that $f_{1}=\operatorname{it}(j, i)$ and $f_{2}=\operatorname{it}(k, j)$ and $\operatorname{it}(k, i)=f_{2} \circ f_{1}$ and f_{1} is a homomorphism of $O_{1}(i)$ into $O_{1}(j)$.

Let us consider P, S, O_{1}, let B be a binding of O_{1}, and let us consider i, j. Let us assume that $i \geq j$. The functor $\operatorname{bind}(B, i, j)$ yielding a many sorted function from $O_{1}(i)$ into $O_{1}(j)$ is defined by:
$($ Def. 3) $\quad \operatorname{bind}(B, i, j)=B(j, i)$.

In the sequel B is a binding of O_{1}.
The following proposition is true
(1) If $i \geq j$ and $j \geq k$, then $\operatorname{bind}(B, j, k) \circ \operatorname{bind}(B, i, j)=\operatorname{bind}(B, i, k)$.

Let us consider P, S, O_{1} and let I_{1} be a binding of O_{1}. We say that I_{1} is normalized if and only if:
(Def. 4) For every i holds $I_{1}(i, i)=\mathrm{id}_{\text {the sorts of }} O_{1}(i)$.
One can prove the following proposition
(2) Let given P, S, O_{1}, B, i, j. Suppose $i \geq j$. Let f be a many sorted function from $O_{1}(i)$ into $O_{1}(j)$. If $f=\operatorname{bind}(B, i, j)$, then f is a homomorphism of $O_{1}(i)$ into $O_{1}(j)$.

Let us consider P, S, O_{1}, B. The functor $\operatorname{Normalized}(B)$ yielding a binding of O_{1} is defined by:
(Def. 5) For all i, j such that $i \geq j$ holds $(\operatorname{Normalized}(B))(j, i)=\left(j=i \rightarrow \mathrm{id}_{\text {the sorts of }} O_{1}(i), \operatorname{bind}(B, i, j) \circ\right.$ $\mathrm{id}_{\text {the sorts of }} O_{1}(i)$.

The following proposition is true
(3) For all i, j such that $i \geq j$ and $i \neq j$ holds $B(j, i)=(\operatorname{Normalized}(B))(j, i)$.

Let us consider P, S, O_{1}, B. One can check that $\operatorname{Normalized}(B)$ is normalized.
Let us consider P, S, O_{1}. One can verify that there exists a binding of O_{1} which is normalized.
The following proposition is true
(4) For every normalized binding N_{1} of O_{1} and for all i, j such that $i \geq j$ holds $\left(\operatorname{Normalized}\left(N_{1}\right)\right)(j, i)=N_{1}(j, i)$.

Let us consider P, S, O_{1} and let B be a binding of O_{1}. The functor $\lim B$ yielding a strict subalgebra of ΠO_{1} is defined by the condition (Def. 6).
(Def. 6) Let s be a sort symbol of S and f be an element of $\left(\operatorname{SORTS}\left(O_{1}\right)\right)(s)$. Then $f \in$ (the sorts of $\left.\lim _{\leftarrow} B\right)(s)$ if and only if for all i, j such that $i \geq j$ holds $(\operatorname{bind}(B, i, j))(s)(f(i))=f(j)$.

Next we state the proposition
(5) Let D_{1} be a discrete non empty poset, given S, O_{1} be a family of algebras over S ordered by D_{1}, and B be a normalized binding of O_{1}. Then $\lim B=\Pi O_{1}$.

2. Sets and Morphisms of Many Sorted Signatures

In the sequel x denotes a set and A denotes a non empty set.
Let X be a set. We say that X is MSS-membered if and only if:
(Def. 7) If $x \in X$, then x is a strict non empty non void many sorted signature.
One can check that there exists a set which is non empty and MSS-membered.
The strict many sorted signature TrivialMSSign is defined as follows:
(Def. 8) TrivialMSSign is empty and void.
Let us note that TrivialMSSign is empty and void.
One can check that there exists a many sorted signature which is strict, empty, and void.
The following proposition is true
(6) Let S be a void many sorted signature. Then $\mathrm{id}_{\text {the carrier of } S}$ and $\mathrm{id}_{\text {the operation symbols of } S}$ form morphism between S and S.

Let us consider A. The functor MSS-set (A) is defined by the condition (Def. 9).
(Def. 9) $x \in \operatorname{MSS}-\operatorname{set}(A)$ if and only if there exists a strict non empty non void many sorted signature S such that $x=S$ and the carrier of $S \subseteq A$ and the operation symbols of $S \subseteq A$.

Let us consider A. Observe that MSS-set (A) is non empty and MSS-membered.
Let A be a non empty MSS-membered set. We see that the element of A is a strict non empty non void many sorted signature.

Let S_{1}, S_{2} be many sorted signatures. The functor MSS-morph $\left(S_{1}, S_{2}\right)$ is defined as follows:
(Def. 10) $\quad x \in \operatorname{MSS}-m o r p h ~\left(S_{1}, S_{2}\right)$ iff there exist functions f, g such that $x=\langle f, g\rangle$ and f and g form morphism between S_{1} and S_{2}.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html
[2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html
[3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ funct_6.html
[4] Grzegorz Bancerek. Minimal signature for partial algebra. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/ Vol7/pua2mss1.html.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[6] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http: //mizar.org/JFM/Vol6/msualg_2.html
[7] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[10] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[12] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_ lang.html
[13] Adam Grabowski. On the category of posets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/orders_ 3.html
[14] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar. org/JFM/Vol6/msualg_3.html
[15] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ pralg_1.html
[16] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html
[19] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
[20] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html
[21] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
[22] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html
[23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html
[25] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html
[26] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/relat_2.html

Received June 11, 1996

Published January 2, 2004

