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Summary. This article introduces the construction of an inverse limit of many sorted
algebras. A few preliminary notions such as an ordered family of many sorted algebras and a
binding of family are formulated. Definitions of a set of many sorted signatures and a set of
signature morphisms are also given.
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The articles([1F7],[[11],[[23],[[18],[[24],[[8],[126] [[9] ,[15],[[22] [ [12],[[19]  [25]/ [10] L12] [17], {1],
[3l, [20], [15], [21], [6], [14], [18], [4], and [13] provide the notation and terminology for this paper.

1. INVERSELIMITS OF MANY SORTED ALGEBRAS

We follow the rulesP denotes a non empty posgtj, k denote elements &, andSdenotes a non
void non empty many sorted signature.

Let | be a non empty set, let us considgiet A; be an algebra family of overS, leti be an
element ofl, and leto be an operation symbol & Note that(OPERA;))(i)(0) is function-like
and relation-like.

Let| be a non empty set, let us consi@&fet A; be an algebra family df overS, and letsbe a
sort symbol ofS. One can verify thatSORTSA1))(s) is functional.

Let us consideP, S. An algebra family of the carrier dP over Sis said to be a family of
algebras oveBordered byP if it satisfies the condition (Def. 1).

(Def. 1) There exists a many sorted functierindexed by the internal relation &such that for all
i, j, Kif i > j andj > k, then there exists a many sorted functifarfrom it(i) into it(j) and
there exists a many sorted functifnfrom it(j) into it(k) such thatf; = F(j, i) andf; = F (k,
i) andF (k, i) = f,0 f; and f1 is a homomorphism of (it) into it(j).

In the sequeD; is a family of algebras ove$ ordered byP.
Let us consideP, S, O;. A many sorted function indexed by the internal relatiofPa$ said to
be a binding of0; if it satisfies the condition (Def. 2).

(Def. 2) Letgiven, j, k. Supposeé > j andj > k. Then there exists a many sorted functigrirom
O4(i) into O41(j) and there exists a many sorted functifarfrom O (j) into O1(k) such that
f1 =it(j,i) and fo =it(k, j) and itk, i) = foo f; and f; is a homomorphism oD4(i) into
O1(j)-

Let us consideP, S, O, let B be a binding 0fO;, and let us considér j. Let us assume that
i > j. The functor bindB, i, ) yielding a many sorted function frof; (i) into O1(j) is defined by:

(Def. 3) bindB.i, ) =B(j, ).
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In the sequeB is a binding ofO;.
The following proposition is true

(1) Ifi>jandj >k, thenbindB, j,k)obind(B,i, j) = bind(B,i, k).
Let us consideP, S, O; and letl; be a binding 0f0;. We say that; is normalized if and only
if:
(Def. 4)  For every holdsly(i, i) = ide sorts ofo, (i)-
One can prove the following proposition

(2) LetgivenP, S O4, B, i, j. Supposeé > j. Let f be a many sorted function frof@y (i) into
O41(j). If f =bind(B,i, j), thenf is a homomorphism dD, (i) into O1(j).

Let us consideP, S, Oy, B. The functor Normalize(B) yielding a binding ofO; is defined by:
(Def. 5) Foralli, j suchthat > j holds(NormalizedB))(j, i) = (j =i — ide sorts ofo, (i), PINA(B, i, j) o
idthe sorts ofOl(i))~
The following proposition is true
(3) Foralli, j such that > j andi # j holdsB(j, i) = (NormalizedB))(j, i).

Let us consideP, S, 01, B. One can check that Normalizd@) is normalized.
Let us consideP, S O;. One can verify that there exists a binding®f which is normalized.

The following proposition is true

(4) For every normalized bindindN; of O; and for all i, j such thati > j holds
(NormalizedNy))(j, i) = Nu(j, ).

Let us considelP, S, O; and letB be a binding ofO;. The functor limB yielding a strict
subalgebra of] O is defined by the condition (Def. 6).
(Def. 6) Letsbe a sort symbol cBand f be an element of SORTS0;))(s). Thenf € (the sorts
of lim B)(s) if and only if for alli, j such thai > j holds(bind(B,i, j))(s)(f(i)) = f(j).
Next we state the proposition

(5) LetD1 be a discrete non empty poset, giv&rO; be a family of algebras oves ordered
by D1, andB be a normalized binding @;. Then limB = [1Ox.

2. SETS AND MORPHISMS OFMANY SORTED SIGNATURES

In the sequek denotes a set anildenotes a hon empty set.
Let X be a set. We say thatis MSS-membered if and only if:

(Def. 7) Ifx € X, thenxis a strict non empty non void many sorted signature.

One can check that there exists a set which is non empty and MSS-membered.
The strict many sorted signature TrivialMSSign is defined as follows:

(Def. 8) TrivialMSSign is empty and void.

Let us note that TrivialMSSign is empty and void.
One can check that there exists a many sorted signature which is strict, empty, and void.

The following proposition is true

(6) LetSbe a void many sorted signature. Thefd@arier ofs aNd idhe operation symbols @ form
morphism betwee® andS.
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Let us consideA. The functor MSS-s¢A\) is defined by the condition (Def. 9).

(Def. 9) xe MSS-setA) if and only if there exists a strict non empty non void many sorted signature

Ssuch thak = Sand the carrier o6 C A and the operation symbols 8fC A.

Let us consideA. Observe that MSS-s&) is non empty and MSS-membered.
Let A be a non empty MSS-membered set. We see that the elemAnsaf strict non empty

non void many sorted signature.

LetS;, S be many sorted signatures. The functor MSS-m(@pl$;) is defined as follows:

(Def. 10) x e MSS-morpliS;,S) iff there exist functiond, g such thak = (f, g) and f andg form
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