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Summary. This article is the second in a series of four articles (started with [19] and
continued in [18], [20]) about modelling circuits by many sorted algebras.

First, we introduce some additional terminology for many sorted signatures. The vertices
of such signatures are divided into input vertices and inner vertices. A many sorted signature
is calledcircuit like if each sort is a result sort of at most one operation. Next, we introduce
some notions for many sorted algebras and many sorted free algebras. Free envelope of an
algebra is a free algebra generated by the sorts of the algebra. Evaluation of an algebra is
defined as a homomorphism from the free envelope of the algebra into the algebra. We define
depth of elements of free many sorted algebras.

A many sorted signature is said to be monotonic if every finitely generated algebra over it
is locally finite (finite in each sort). Monotonic signatures are used (see [18],[20]) in modelling
backbones of circuits without directed cycles.

MML Identifier: MSAFREE2.

WWW: http://mizar.org/JFM/Vol6/msafree2.html

The articles [23], [12], [27], [1], [28], [10], [15], [7], [11], [21], [3], [2], [4], [5], [6], [24], [17],
[25], [13], [22], [9], [8], [14], [29], [16], [26], and [19] provide the notation and terminology for
this paper.

1. MANY SORTED SIGNATURES

Let Sbe a many sorted signature. A vertex ofS is an element ofS.
Let Sbe a non empty many sorted signature. The functor SortsWithConstants(S) yields a subset

of Sand is defined by:

(Def. 1) SortsWithConstants(S)=
{

{v;v ranges over sort symbols ofS: v has constants}, if Sis non void,
/0, otherwise.

Let G be a non empty many sorted signature. The functor InputVertices(G) yielding a subset of
G is defined by:

(Def. 2) InputVertices(G) = (the carrier ofG)\ rng(the result sort ofG).

The functor InnerVertices(G) yields a subset ofG and is defined by:

(Def. 3) InnerVertices(G) = rng(the result sort ofG).
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The following propositions are true:

(1) For every void non empty many sorted signatureG holds InputVertices(G) = the carrier of
G.

(2) Let G be a non void non empty many sorted signature andv be a vertex ofG. Suppose
v∈ InputVertices(G). Then it is not true that there exists an operation symbolo of G such that
the result sort ofo = v.

(3) For every non empty many sorted signatureG holds InputVertices(G)∪ InnerVertices(G) =
the carrier ofG.

(4) For every non empty many sorted signatureG holds InputVertices(G) misses
InnerVertices(G).

(5) For every non empty many sorted signatureG holds SortsWithConstants(G) ⊆
InnerVertices(G).

(6) For every non empty many sorted signatureG holds InputVertices(G) misses
SortsWithConstants(G).

Let I1 be a non empty many sorted signature. We say thatI1 has input vertices if and only if:

(Def. 4) InputVertices(I1) 6= /0.

One can check that there exists a non empty many sorted signature which is non void and has
input vertices.

Let G be a non empty many sorted signature with input vertices. Observe that InputVertices(G)
is non empty.

Let G be a non void non empty many sorted signature. Then InnerVertices(G) is a non empty
subset ofG.

Let Sbe a non empty many sorted signature and letM1 be a non-empty algebra overS. A many
sorted set indexed by InputVertices(S) is said to be an input assignment ofM1 if:

(Def. 5) For every vertexv of Ssuch thatv∈ InputVertices(S) holds it(v) ∈ (the sorts ofM1)(v).

Let S be a non empty many sorted signature. We say thatS is circuit-like if and only if the
condition (Def. 6) is satisfied.

(Def. 6) Let S′ be a non void non empty many sorted signature. SupposeS′ = S. Let o1, o2 be
operation symbols ofS′. If the result sort ofo1 = the result sort ofo2, theno1 = o2.

Let us note that every non empty many sorted signature which is void is also circuit-like.
One can check that there exists a non empty many sorted signature which is non void, circuit-

like, and strict.
Let I2 be a circuit-like non void non empty many sorted signature and letv be a vertex ofI2. Let

us assume thatv∈ InnerVertices(I2). The action atv yields an operation symbol ofI2 and is defined
by:

(Def. 7) The result sort of the action atv = v.

2. FREE MANY SORTED ALGEBRAS

Next we state the proposition

(7) Let S be a non void non empty many sorted signature,A be an algebra overS, o be an
operation symbol ofS, and p be a finite sequence. Suppose lenp = lenArity(o) and for
every natural numberk such thatk ∈ domp holds p(k) ∈ (the sorts ofA)(Arity(o)k). Then
p∈ Args(o,A).
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Let Sbe a non void non empty many sorted signature and letM1 be a non-empty algebra overS.
The functor FreeEnvelope(M1) yielding a free strict non-empty algebra overSis defined as follows:

(Def. 8) FreeEnvelope(M1) = Free(the sorts ofM1).

The following proposition is true

(8) LetSbe a non void non empty many sorted signature andM1 be a non-empty algebra over
S. Then FreeGenerator(the sorts ofM1) is a free generator set of FreeEnvelope(M1).

Let Sbe a non void non empty many sorted signature and letM1 be a non-empty algebra overS.
The functor Eval(M1) yields a many sorted function from FreeEnvelope(M1) into M1 and is defined
by the conditions (Def. 9).

(Def. 9)(i) Eval(M1) is a homomorphism of FreeEnvelope(M1) into M1, and

(ii) for every sort symbols of Sand for all setsx, y such thaty∈ FreeSort(the sorts ofM1, s)
andy = the root tree of〈〈x, s〉〉 andx∈ (the sorts ofM1)(s) holds(Eval(M1))(s)(y) = x.

One can prove the following proposition

(9) Let Sbe a non void non empty many sorted signature andA be a non-empty algebra over
S. Then the sorts ofA are a generator set ofA.

Let S be a non empty many sorted signature and letI1 be an algebra overS. We say thatI1 is
finitely-generated if and only if:

(Def. 10)(i) For every non void non empty many sorted signatureS′ such thatS′ = Sand for every
algebraA overS′ such thatA= I1 holds there exists a generator set ofA which is locally-finite
if S is not void,

(ii) the sorts ofI1 are locally-finite, otherwise.

Let S be a non empty many sorted signature and letI1 be an algebra overS. We say thatI1 is
locally-finite if and only if:

(Def. 11) The sorts ofI1 are locally-finite.

Let S be a non empty many sorted signature. Observe that every non-empty algebra overS
which is locally-finite is also finitely-generated.

Let S be a non empty many sorted signature. The trivial algebra ofS yielding a strict algebra
overS is defined by:

(Def. 12) The sorts of the trivial algebra ofS= (the carrier ofS) 7−→ {0}.

Let Sbe a non empty many sorted signature. One can verify that there exists an algebra overS
which is locally-finite, non-empty, and strict.

Let I1 be a non empty many sorted signature. We say thatI1 is monotonic if and only if:

(Def. 13) Every finitely-generated non-empty algebra overI1 is locally-finite.

Let us note that there exists a non empty many sorted signature which is non void, finite, mono-
tonic, and circuit-like.

Next we state several propositions:

(10) LetSbe a non void non empty many sorted signature,X be a non-empty many sorted set
indexed by the carrier ofS, andv be a sort symbol ofS. Then every element of the sorts of
Free(X)(v) is a finite decorated tree.

(11) LetSbe a non void non empty many sorted signature andX be a non-empty locally-finite
many sorted set indexed by the carrier ofS. Then Free(X) is finitely-generated.
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(12) Let S be a non void non empty many sorted signature,A be a non-empty algebra over
S, v be a vertex ofS, ande be an element of (the sorts of FreeEnvelope(A))(v). Suppose
v∈ InputVertices(S). Then there exists an elementx of (the sorts ofA)(v) such thate= the
root tree of〈〈x, v〉〉.

(13) LetSbe a non void non empty many sorted signature,X be a non-empty many sorted set
indexed by the carrier ofS, o be an operation symbol ofS, andp be a decorated tree yielding
finite sequence. Suppose〈〈o, the carrier ofS〉〉-tree(p) ∈ (the sorts of Free(X))(the result sort
of o). Then lenp = lenArity(o).

(14) Let S be a non void non empty many sorted signature,X be a non-empty many sorted
set indexed by the carrier ofS, o be an operation symbol ofS, and p be a decorated tree
yielding finite sequence. Suppose〈〈o, the carrier ofS〉〉-tree(p) ∈ (the sorts of Free(X))(the
result sort ofo). Let i be a natural number. Ifi ∈ domArity(o), then p(i) ∈ (the sorts of
Free(X))(Arity(o)(i)).

Let S be a non void non empty many sorted signature, letX be a non-empty many sorted set
indexed by the carrier ofS, and letv be a vertex ofS. Note that every element of (the sorts of
Free(X))(v) is finite, non empty, function-like, and relation-like.

Let S be a non void non empty many sorted signature, letX be a non-empty many sorted set
indexed by the carrier ofS, and letv be a vertex ofS. Observe that there exists an element of (the
sorts of Free(X))(v) which is function-like and relation-like.

Let S be a non void non empty many sorted signature, letX be a non-empty many sorted set
indexed by the carrier ofS, and letv be a vertex ofS. Note that every function-like relation-like
element of (the sorts of Free(X))(v) is decorated tree-like.

Let I2 be a non void non empty many sorted signature, letX be a non-empty many sorted set
indexed by the carrier ofI2, and letv be a vertex ofI2. Note that there exists an element of (the sorts
of Free(X))(v) which is finite.

One can prove the following proposition

(15) Let S be a non void non empty many sorted signature,X be a non-empty many sorted
set indexed by the carrier ofS, v be a vertex ofS, o be an operation symbol ofS, ande be
an element of (the sorts of Free(X))(v). Supposev ∈ InnerVertices(S) ande( /0) = 〈〈o, the
carrier ofS〉〉. Then there exists a decorated tree yielding finite sequencep such that lenp =
lenArity(o) and for every natural numberi such thati ∈ domp holds p(i) ∈ (the sorts of
Free(X))(Arity(o)(i)).

Let S be a non void non empty many sorted signature, letX be a non-empty many sorted set
indexed by the carrier ofS, let v be a sort symbol ofS, and lete be an element of (the sorts of
Free(X))(v). The functor depth(e) yielding a natural number is defined by:

(Def. 14) There exists a finite decorated treed1 and there exists a finite treet such thatd1 = e and
t = domd1 and depth(e) = heightt.
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[10] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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