A Scheme for Extensions of Homomorphisms of Many Sorted Algebras

Andrzej Trybulec Warsaw University Białystok

Summary. The aim of this work is to provide a bridge between the theory of context-free grammars developed in [10], [6] and universally free manysorted algebras([14]. The third scheme proved in the article allows to prove that two homomorphisms equal on the set of free generators are equal. The first scheme is a slight modification of the scheme in [6] and the second is rather technical, but since it was useful for me, perhaps it might be useful for somebody else. The concept of flattening of a many sorted function F between two manysorted sets A and B (with common set of indices I) is introduced for A with mutually disjoint components (pairwise disjoint function – the concept introduced in [13]). This is a function on the union of A, that is equal to F on every component of A. A trivial many sorted algebra over a signature S is defined with sorts being singletons of corresponding sort symbols. It has mutually disjoint sorts.

MML Identifier: MSAFREE1.

WWW: http://mizar.org/JFM/Vol6/msafree1.html

The articles [15], [9], [18], [19], [7], [8], [5], [13], [1], [2], [3], [4], [10], [6], [12], [16], [17], [14], and [11] provide the notation and terminology for this paper.

The following proposition is true

(1) For all functions f, g such that $g \in \prod f$ holds rng $g \subseteq \bigcup f$.

The scheme DTConstrUniq deals with a non empty tree construction structure \mathcal{A} , a non empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a ternary functor \mathcal{G} yielding an element of \mathcal{B} , and functions \mathcal{C} , \mathcal{D} from $TS(\mathcal{A})$ into \mathcal{B} , and states that:

$$C = D$$

provided the parameters meet the following conditions:

- For every symbol t of \mathcal{A} such that $t \in$ the terminals of \mathcal{A} holds \mathcal{C} (the root tree of t) = $\mathcal{F}(t)$,
- Let n_1 be a symbol of \mathcal{A} and t_1 be a finite sequence of elements of $TS(\mathcal{A})$. Suppose $n_1 \Rightarrow$ the roots of t_1 . Let x be a finite sequence of elements of \mathcal{B} . If $x = \mathcal{C} \cdot t_1$, then $\mathcal{C}(n_1\text{-tree}(t_1)) = \mathcal{G}(n_1, t_1, x)$,
- For every symbol t of \mathcal{A} such that $t \in$ the terminals of \mathcal{A} holds \mathcal{D} (the root tree of t) = $\mathcal{F}(t)$, and
- Let n_1 be a symbol of \mathcal{A} and t_1 be a finite sequence of elements of $TS(\mathcal{A})$. Suppose $n_1 \Rightarrow$ the roots of t_1 . Let x be a finite sequence of elements of \mathcal{B} . If $x = \mathcal{D} \cdot t_1$, then $\mathcal{D}(n_1\text{-tree}(t_1)) = \mathcal{G}(n_1, t_1, x)$.

Next we state two propositions:

- (2) Let S be a non void non empty many sorted signature, X be a many sorted set indexed by the carrier of S, and o, b be sets. Suppose $\langle o, b \rangle \in REL(X)$. Then
- (i) $o \in [$: the operation symbols of S, {the carrier of S}:], and
- (ii) $b \in ([: \text{the operation symbols of } S, \{\text{the carrier of } S\}:] \cup \bigcup \operatorname{coprod}(X))^*.$
- (3) Let S be a non void non empty many sorted signature, X be a many sorted set indexed by the carrier of S, o be an operation symbol of S, and b be a finite sequence. Suppose $\langle \langle o, \rangle \rangle$ the carrier of $\langle o, \rangle \rangle \in \text{REL}(X)$. Then
- (i) len b = len Arity(o), and
- (ii) for every set x such that $x \in \text{dom } b$ holds if $b(x) \in [$: the operation symbols of S, {the carrier of S}:], then for every operation symbol o_1 of S such that $\langle o_1$, the carrier of $S \rangle = b(x)$ holds the result sort of $o_1 = \text{Arity}(o)(x)$ and if $b(x) \in \bigcup \text{coprod}(X)$, then $b(x) \in \text{coprod}(\text{Arity}(o)(x), X)$.

Let D be a set. We see that the finite sequence of elements of D is an element of D^* .

Let I be a non empty set and let M be a non-empty many sorted set indexed by I. One can verify that $\operatorname{rng} M$ is non empty and has non empty elements.

Let *D* be a non empty set with non empty elements. One can verify that $\bigcup D$ is non empty.

Let I be a set. Note that every many sorted set indexed by I which is empty yielding is also disjoint valued.

Let I be a set. Observe that there exists a many sorted set indexed by I which is disjoint valued. Let I be a non empty set, let X be a disjoint valued many sorted set indexed by I, let D be a non-empty many sorted set indexed by I, and let F be a many sorted function from X into D. The functor Flatten(F) yielding a function from $\bigcup X$ into $\bigcup D$ is defined as follows:

(Def. 1) For every element i of I and for every set x such that $x \in X(i)$ holds (Flatten(F))(x) = F(i)(x).

Next we state the proposition

(4) Let I be a non empty set, X be a disjoint valued many sorted set indexed by I, D be a non-empty many sorted set indexed by I, and F_1 , F_2 be many sorted functions from X into D. If Flatten(F_1) = Flatten(F_2), then $F_1 = F_2$.

Let S be a non empty many sorted signature and let A be an algebra over S. We say that A is disjoint valued if and only if:

(Def. 2) The sorts of A are disjoint valued.

Let S be a non empty many sorted signature. The functor SingleAlg(S) yielding a strict algebra over S is defined by:

(Def. 3) For every set i such that $i \in \text{the carrier of } S \text{ holds (the sorts of SingleAlg}(S))(i) = \{i\}.$

Let S be a non empty many sorted signature. One can verify that there exists an algebra over S which is non-empty and disjoint valued.

Let S be a non empty many sorted signature. One can verify that SingleAlg(S) is non-empty and disjoint valued.

Let S be a non empty many sorted signature and let A be a disjoint valued algebra over S. Note that the sorts of A is disjoint valued.

Next we state the proposition

(5) Let S be a non void non empty many sorted signature, o be an operation symbol of S, A_1 be a non-empty disjoint valued algebra over S, A_2 be a non-empty algebra over S, f be a many sorted function from A_1 into A_2 , and a be an element of $\operatorname{Args}(o,A_1)$. Then $\operatorname{Flatten}(f) \cdot a = f\#a$.

Let S be a non-void non empty many sorted signature and let X be a non-empty many sorted set indexed by the carrier of S. Observe that FreeSorts(X) is disjoint valued.

The scheme FreeSortUniq deals with a non void non empty many sorted signature \mathcal{A} , non-empty many sorted sets \mathcal{B} , \mathcal{C} indexed by the carrier of \mathcal{A} , a unary functor \mathcal{F} yielding an element of $\bigcup \mathcal{C}$, a ternary functor \mathcal{G} yielding an element of $\bigcup \mathcal{C}$, and many sorted functions \mathcal{D} , \mathcal{E} from FreeSorts(\mathcal{B}) into \mathcal{C} , and states that:

$$\mathcal{D} = \mathcal{E}$$

provided the following conditions are satisfied:

- Let o be an operation symbol of \mathcal{A} , t_1 be an element of $\operatorname{Args}(o,\operatorname{Free}(\mathcal{B}))$, and x be a finite sequence of elements of $\bigcup \mathcal{C}$. If $x = \operatorname{Flatten}(\mathcal{D}) \cdot t_1$, then \mathcal{D} (the result sort of o)(($\operatorname{Den}(o,\operatorname{Free}(\mathcal{B}))$)(t_1)) = $\mathcal{G}(o,t_1,x)$,
- For every sort symbol s of \mathcal{A} and for every set y such that $y \in \text{FreeGenerator}(s, \mathcal{B})$ holds $\mathcal{D}(s)(y) = \mathcal{F}(y)$,
- Let o be an operation symbol of \mathcal{A} , t_1 be an element of $\operatorname{Args}(o,\operatorname{Free}(\mathcal{B}))$, and x be a finite sequence of elements of $\bigcup \mathcal{C}$. If $x = \operatorname{Flatten}(\mathcal{E}) \cdot t_1$, then \mathcal{E} (the result sort of o)((Den $(o,\operatorname{Free}(\mathcal{B}))$) (t_1)) = $\mathcal{G}(o,t_1,x)$, and
- For every sort symbol s of \mathcal{A} and for every set y such that $y \in \text{FreeGenerator}(s, \mathcal{B})$ holds $\mathcal{E}(s)(y) = \mathcal{F}(y)$.

Let S be a non-void non empty many sorted signature and let X be a non-empty many sorted set indexed by the carrier of S. Observe that Free(X) is non-empty.

Let S be a non-void non empty many sorted signature, let o be an operation symbol of S, and let A be a non-empty algebra over S. One can check that Args(o,A) is non empty and Result(o,A) is non empty.

Let S be a non-void non empty many sorted signature and let X be a non-empty many sorted set indexed by the carrier of S. Note that the sorts of Free(X) is disjoint valued.

Let S be a non-void non empty many sorted signature and let X be a non-empty many sorted set indexed by the carrier of S. Observe that Free(X) is disjoint valued.

The scheme ExtFreeGen deals with a non void non empty many sorted signature \mathcal{A} , a non-empty many sorted set \mathcal{B} indexed by the carrier of \mathcal{A} , a non-empty algebra \mathcal{C} over \mathcal{A} , many sorted functions \mathcal{D} , \mathcal{E} from Free(\mathcal{B}) into \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

$$\mathcal{D} = \mathcal{E}$$

provided the following requirements are met:

- \mathcal{D} is a homomorphism of Free(\mathcal{B}) into \mathcal{C} ,
- For every sort symbol s of \mathcal{A} and for all sets x, y such that $y \in \text{FreeGenerator}(s, \mathcal{B})$ holds $\mathcal{D}(s)(y) = x$ iff $\mathcal{P}[s, x, y]$,
- \mathcal{E} is a homomorphism of Free(\mathcal{B}) into \mathcal{C} , and
- For every sort symbol s of \mathcal{A} and for all sets x, y such that $y \in \text{FreeGenerator}(s, \mathcal{B})$ holds $\mathcal{E}(s)(y) = x$ iff $\mathcal{P}[s, x, y]$.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html.
- [3] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/trees_3.html.
- [4] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_4.html.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/dtconstr.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.

- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/langl.html.
- [11] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [12] Andrzej Nędzusiak. σ-fields and probability. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/prob_1.
- [13] Andrzej Nędzusiak. Probability. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/prob_2.html.
- [14] Beata Perkowska. Free many sorted universal algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msafree.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [17] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received December 13, 1994

Published January 2, 2004