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1. PRELIMINARIES
The following proposition is true

(1) Letl be a setJ) be a non empty sef, be a function from into J*, X be a many sorted set
indexed byJ, p be an element af*, andx be a set. Ik € | andp = f(x), then(X¥*. f)(x) =

M(X-p).

Let| be a set, leA, B be many sorted sets indexed Ipyet C be a many sorted subset indexed
by A, and letF be a many sorted function frokinto B. The functor- | C yielding a many sorted
function fromC into B is defined by:

(Def. 1) For every satsuch that € | and for every functiorf from A(i) into B(i) such thatf = F (i)
holds(F [ C)(i) = f[C(i).

Letl be a set, leK be a many sorted set indexedlhyand leti be a set. Let us assume that|.
The functor coprofl, X) yielding a set is defined by:

(Def. 2) For every set holdsx € coprodi, X) iff there exists a sed such that € X(i) andx = (a,
i).

Letl be a set and IeX be a many sorted set indexed byThen disjoin is a many sorted set
indexed byl and it can be characterized by the condition:

(Def. 3) For every seatsuch that € | holds(disjointX)(i) = coprodi, X).

We introduce copro) as a synonym of disjoirX.

Let | be a non empty set and I&t be a non-empty many sorted set indexedl byNote that
coprod X) is non-empty.

Let| be a non empty set and I¥tbe a non-empty many sorted set indexed bbserve that
UX is non empty.

The following proposition is true

(2) Letl be a setX be a many sorted set indexed lgyandi be a set. Ii € I, thenX(i) # 0 iff
(coprod X)) (i) # 0.

1 © Association of Mizar Users
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2. FREEMANY SORTEDUNIVERSAL ALGEBRA — GENERAL NOTIONS

In the sequeS denotes a non void non empty many sorted signaturéJanitnotes an algebra over

S
Let Sbe a non void non empty many sorted signature andddde an algebra oves. A subset

of Ug is called a generator set 0f if:
(Def. 4) The sorts of Geit) = the sorts ofJp.
The following proposition is true

(3) LetSbe a non void non empty many sorted signatlugpe a strict non-empty algebra
overS, andA be a subset dfly. ThenA is a generator set afy if and only if Ger{A) = Up.

Let us consideB, Ug and letl; be a generator set bfy. We say that; is free if and only if the
condition (Def. 5) is satisfied.

(Def. 5) LetU; be a non-empty algebra ov8rand f be a many sorted function from into the
sorts ofU;. Then there exists a many sorted functiofrom Ug into U; such thath is a

homomorphism ob)g intoU; andh | I = f.

Let Sbe a non void non empty many sorted signature anty Ibe an algebra oves. We say
thatl is free if and only if:

(Def. 6) There exists a generator setpivhich is free.
We now state the proposition

(4) LetSbe a non void non empty many sorted signature drmk a many sorted set indexed
by the carrier ofS. Then|JcoprodX) misses|:the operation symbols &, {the carrier of

S}t
3. CONSTRUCTION OFFREE MANY SORTED ALGEBRA

Let Sbe a non void many sorted signature. Note that the operation symb®is abn empty.

Let Sbe a non void non empty many sorted signature anH le¢ a many sorted set indexed by
the carrier ofS. The functor RELX) yielding a relation betweenthe operation symbols & {the
carrier ofS} Ul coprod X) and([: the operation symbols &, {the carrier ofS} ] U|JcoprodX))*
is defined by the condition (Def. 9).

(Def. 9E] Letabe an element dfthe operation symbols & {the carrier ofS} ] U(Jcoprod X) and
b be an element off: the operation symbols & {the carrier ofS} ] U{JcoprodX))*. Then
(a, b) € REL(X) if and only if the following conditions are satisfied:

(i) ae€[the operation symbols @, {the carrier ofS} ], and

(i)  for every operation symbob of S such that(o, the carrier ofS) = a holds lerh =
len Arity(0) and for every sex such thatx € domb holds if b(x) € [:the operation symbols
of S, {the carrier ofS} ], then for every operation symbo} of S such that(o;, the car-
rier of S) = b(x) holds the result sort ab; = Arity (0)(x) and if b(x) € |JcoprodX), then
b(x) € coprodArity (0)(x), X).

In the sequeb denotes a non void non empty many sorted signaiXidenotes a many sorted
set indexed by the carrier & o denotes an operation symbol &f andb denotes an element of
([ the operation symbols & {the carrier ofS} ] UJcoprodX))*.

One can prove the following proposition

1 The definitions (Def. 7) and (Def. 8) have been removed.
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(5) ({o, the carrier ofS), b} € REL(X) if and only if the following conditions are satisfied:
(i) lenb=lenArity(0), and

(i) for every setx such thak € domb holds ifb(x) € [:the operation symbols & {the carrier
of S} ], then for every operation symboj of Ssuch thafo, the carrier ofS) = b(x) holds the
result sort of; = Arity (0)(x) and ifb(x) € |J coprod X), thenb(x) € coprodArity (0)(x), X).

Let Sbe a non void non empty many sorted signature an¥ le¢ a many sorted set indexed by
the carrier ofS. The functor DTConMSAX) yields a tree construction structure and is defined by:

(Def. 10) DTConMSAX) = ([:the operation symbols db, {the carrier ofS}:] U JcoprodX),
REL(X)).

Let Sbe a non void non empty many sorted signature anH le¢ a many sorted set indexed by
the carrier ofS. Observe that DTConMSKX) is strict and non empty.
The following proposition is true

(6) LetSbe a non void non empty many sorted signature ¥rxe a non-empty many sorted
set indexed by the carrier & Then the nonterminals of DTConM$X) = [ the operation
symbols ofS, {the carrier ofS} ] and the terminals of DTConMSKX) = |J coprod X).

Let Sbe a non void non empty many sorted signature an¥ le¢ a non-empty many sorted set
indexed by the carrier d&. Observe that DTConMS{X) has terminals, nonterminals, and useful
nonterminals.

One can prove the following proposition

(7) LetSbe a non void non empty many sorted signatddye a non-empty many sorted set
indexed by the carrier db, andt be a set. Thenh € the terminals of DTConMSX) if and
only if there exists a sort symbelof Sand there exists a seisuch thak € X(s) andt = (x,

S).

Let Sbe a non void non empty many sorted signatureXldéte a non-empty many sorted set
indexed by the carrier o, and leto be an operation symbol & The functor Syrfo, X) yields a
symbol of DTConMSAX) and is defined by:

(Def. 11) Synfo, X) = (o, the carrier ofS).

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier d§, and lets be a sort symbol o8. The functor FreeSofX,s) yielding a
subset of TEDTConMSA(X)) is defined by the condition (Def. 12).

(Def. 12) FreeSofi,s) = {a;a ranges over elements of TBTCoNMSA(X)): Vy:set (X € X(S) A
a=the root tree of{x, s)) V Vo:operation symbol os ({0, the carrier ofS) = a(0) A the result
sort ofo=19)}.

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier d, and lets be a sort symbol o8 Note that FreeSa(iX, s) is non empty.

Let Sbe a non void non empty many sorted signature anX Ibe a non-empty many sorted
set indexed by the carrier & The functor FreeSortX) yields a many sorted set indexed by the
carrier ofSand is defined as follows:

(Def. 13) For every sort symbslof Sholds(FreeSortéX))(s) = FreeSortX,s).

Let Sbe a non void non empty many sorted signature any le¢ a non-empty many sorted set
indexed by the carrier @. Note that FreeSortX) is non-empty.
One can prove the following propositions:

(8) LetSbe a non void non empty many sorted signatutehe a non-empty many sorted
set indexed by the carrier & o be an operation symbol db, andx be a set. Sup-
posex € ((FreeSortéX))# - the arity of S)(0). Thenx is a finite sequence of elements of
TS(DTConMSA(X)).
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(9) LetSbe a non void non empty many sorted signatutehe a non-empty many sorted
set indexed by the carrier & o be an operation symbol &, and p be a finite sequence
of elements of TEDTConMSA(X)). Thenp € ((FreeSortéX))* - the arity of S)(o) if and
only if domp = domArity(0o) and for every natural number such thatn € domp holds
p(n) € FreeSortX, Arity (0)n).

(10) LetSbe a non void non empty many sorted signatutehe a non-empty many sorted
set indexed by the carrier & o be an operation symbol &, and p be a finite sequence
of elements of TEDTConMSA(X)). Then Synfo,X) = the roots ofp if and only if p €
((FreeSortéX))# - the arity ofS)(0).

(12E] Let Sbe a non void non empty many sorted signature e a non-empty many sorted
set indexed by the carrier & ThenlJrngFreeSorts<) = TS(DTConMSA(X)).

(13) LetShe a non void non empty many sorted signatdrdae a non-empty many sorted set
indexed by the carrier @&, ands;, $; be sort symbols db. If s; # s, then(FreeSortéX))(s1)
misses FreeSortéX))(sp).

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier @&, and leto be an operation symbol & The functor DenOf®, X) yielding
a function from((FreeSortgX))* - the arity ofS)(0) into (FreeSortéX) - the result sort 08)(0) is
defined as follows:

(Def. 14) For every finite sequengef elements of TEDTConMSA(X)) such that Syrtp, X) = the
roots of p holds(DenOgo, X))(p) = Sym(o, X)-treg(p).

Let Sbe a non void non empty many sorted signature an& Ibe a non-empty many sorted
set indexed by the carrier & The functor FreeOperatiof¥$) yields a many sorted function from
(FreeSorteX))* - the arity ofSinto FreeSortéX) - the result sort o8and is defined as follows:

(Def. 15) For every operation symbobf Sholds(FreeOperation¥)) (o) = DenOgo, X).

Let Sbe a non void non empty many sorted signature any le¢ a non-empty many sorted set
indexed by the carrier @& The functor FregX) yielding an algebra ove®is defined by:

(Def. 16) Fre¢X) = (FreeSortéX), FreeOperationX)).

Let Sbe a non void non empty many sorted signature any le¢ a non-empty many sorted set
indexed by the carrier . Note that FregX) is strict and non-empty.

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier d§, and lets be a sort symbol 08. The functor FreeGeneratsrX) yields
a subset of FreeSortéX))(s) and is defined as follows:

(Def. 17) For every set holdsx € FreeGeneratds, X) iff there exists a set such that € X(s) and
x =the root tree ofa, s).

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier @, and letsbe a sort symbol 0. Observe that FreeGenerg®iX) is non
empty.

We now state the proposition

(14) LetSbe a non void hon empty many sorted signatddse a non-empty many sorted set
indexed by the carrier &, andsbe a sort symbol 08. Then FreeGenerat X) = {the root
tree oft; t ranges over symbols of DTConM$%X): t € the terminals of DTConMSEX) A

t2:S}.

Let Sbe a non void non empty many sorted signature any le¢ a non-empty many sorted set
indexed by the carrier db. The functor FreeGeneratdt) yielding a generator set of Freg) is
defined by:

2 The proposition (11) has been removed.
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(Def. 18) For every sort symbslof Sholds(FreeGeneratdK))(s) = FreeGeneratds, X).
The following two propositions are true:

(15) LetSbe a non void non empty many sorted signature drmk a non-empty many sorted
set indexed by the carrier & Then FreeGeneratof) is non-empty.

(16) LetSbe a non void non empty many sorted signature drzk a non-empty many sorted
set indexed by the carrier & Then|Jrng FreeGenerat@X) = {the root tree of; t ranges
over symbols of DTConMSEX): t € the terminals of DTConMS£X)}.

Let She a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier d§, and lets be a sort symbol 0§ The functor Reverge, X) yielding a
function from FreeGenerat(; X) into X(s) is defined by:

(Def. 19) For every symbdl of DTConMSA(X) such that the root tree ¢fe FreeGeneratgs, X)
holds(Reversés, X))(the root tree of) =t;.

Let Sbe a non void non empty many sorted signature an& Ibe a non-empty many sorted
set indexed by the carrier & The functor RevergX) yields a many sorted function from
FreeGeneratgK) into X and is defined as follows:

(Def. 20) For every sort symbalof Sholds(ReverséX))(s) = Reversgs, X).

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier @, let A be a non-empty many sorted set indexed by the carri& et F
be a many sorted function from FreeGenergfgrinto A, and lett be a symbol of DTConMS£X).
Let us assume thate the terminals of DTConMSEX). The functorr(F, A,t) yielding an element
of | JAis defined by:

(Def. 21) For every functiorf such thatf = F(t,) holdsTi(F, A t) = f(the root tree of).

Let Sbe a non void non empty many sorted signatureXldte a non-empty many sorted set
indexed by the carrier o8, and lett be a symbol of DTConMSEX). Let us assume that there
exists a finite sequengesuch that = p. The functor@(X,t) yields an operation symbol &and
is defined as follows:

(Def. 22) (@(X.,t), the carrier ofS) =t.

Let Sbe a non void non empty many sorted signaturdJigbe a non-empty algebra overlet
o0 be an operation symbol & and letp be a finite sequence. Let us assume thatArgs(o,Up).
The functorm(o, Uy, p) yielding an element of) (the sorts ofJp) is defined by:

(Def. 23) m(0,Uq, p) = (Den(0,Uo))(p).
Next we state two propositions:

(17) LetSbe a non void non empty many sorted signature gk a non-empty many sorted
set indexed by the carrier & Then FreeGeneratoX) is free.

(18) LetSbe a non void non empty many sorted signature drzk a non-empty many sorted
set indexed by the carrier & Then FreéX) is free.

Let Sbe a non void non empty many sorted signature. Observe that there exists a non-empty
algebra oveSwhich is free and strict.

Let Sbe a non void non empty many sorted signature andddie a free algebra ov& One
can check that there exists a generator sélpofhich is free.

One can prove the following two propositions:

(19) LetSbe a non void non empty many sorted signatureldnbe a non-empty algebra over
S. Then there exists a strict free non-empty algéliyaver S such that there exists a many
sorted function frontJg into U; which is an epimorphism dfig ontoU;.

(20) LetSbe a non void non empty many sorted signatureldne a strict non-empty algebra
overS Then there exists a strict free non-empty algdlifaver S and there exists a many
sorted functior fromUg into U1 such thaf is an epimorphism dflp ontoU; and ImF =Uj.
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