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Summary. The goal of the article is to define the concept of monoid. In the prelim-
inary section we introduce the notion of some properties of binary operations. The second
section is concerning with structures with a set and a binary operation on this set: there is
introduced the notion corresponding to the notion of some properties of binary operations
and there are shown some useful clusters. Next, we are concerning with the structure with a
set, a binary operation on the set and with an element of the set. Such a structure is called
monoid iff the operation is associative and the element is a unity of the operation. In the
fourth section the concept of subsystems of monoid (group) is introduced. Subsystems are
submonoids (subgroups) or other parts of monoid (group) with are closed w.r.t. the operation.
There are presented facts on inheritness of some properties by subsystems. Finally, there are
constructed the examples of groups and monoids: the group〉R,+〈 of real numbers with ad-
dition, the groupZ+ of integers as the subsystem of the group〉R,+〈, the semigroup〉N,+〈
of natural numbers as the subsystem ofZ+, and the monoid〉N,+,0〈 of natural numbers with
addition and zero as monoidal extension of the semigroup〉N,+〈. The semigroups of real and
natural numbers with multiplication are also introduced. The monoid of finite sequences over
some set with concatenation as binary operation and with empty sequence as neutral element
is defined in sixth section. Last section deals with monoids with the composition of func-
tions as the operation, i.e. with the monoid of partial and total functions and the monoid of
permutations.

MML Identifier: MONOID_0.

WWW: http://mizar.org/JFM/Vol4/monoid_0.html

The articles [16], [7], [21], [18], [10], [17], [1], [22], [8], [4], [2], [23], [6], [5], [3], [9], [19], [11],
[12], [15], [14], [20], and [13] provide the notation and terminology for this paper.

1. BINARY OPERATIONS PRELIMINARY

In this paperx, X, Y are sets.
Let G be a 1-sorted structure. A binary operation onG is a binary operation on the carrier ofG.
Let I1 be a 1-sorted structure. We say thatI1 is constituted functions if and only if:

(Def. 1) Every element ofI1 is a function.

We say thatI1 is constituted finite sequences if and only if:

(Def. 2) Every element ofI1 is a finite sequence.

Let us observe that there exists a 1-sorted structure which is constituted functions and there
exists a 1-sorted structure which is constituted finite sequences.
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Let X be a constituted functions 1-sorted structure. Observe that every element ofX is function-
like and relation-like.

Let us note that every 1-sorted structure which is constituted finite sequences is also constituted
functions.

Let us mention that every groupoid which is constituted finite sequences is also constituted
functions.

Let X be a constituted finite sequences 1-sorted structure. One can verify that every element of
X is finite sequence-like.

Let D be a set and letp, q be finite sequences of elements ofD. Thenpa q is an element ofD∗.
Let g, f be functions. We introducef ◦g as a synonym off ·g.
Let X be a set and letg, f be functions fromX into X. Then f ·g is a function fromX into X.
Let X be a set and letg, f be permutations ofX. Then f ·g is a permutation ofX.
Let D be a non empty set and letI1 be a binary operation onD. We say thatI1 is left invertible

if and only if:

(Def. 3) For all elementsa, b of D there exists an elementl of D such thatI1(l , a) = b.

We say thatI1 is right invertible if and only if:

(Def. 4) For all elementsa, b of D there exists an elementr of D such thatI1(a, r) = b.

We say thatI1 is invertible if and only if:

(Def. 5) For all elementsa, b of D there exist elementsr, l of D such thatI1(a, r) = b and I1(l ,
a) = b.

We say thatI1 is left cancelable if and only if:

(Def. 6) For all elementsa, b, c of D such thatI1(a, b) = I1(a, c) holdsb = c.

We say thatI1 is right cancelable if and only if:

(Def. 7) For all elementsa, b, c of D such thatI1(b, a) = I1(c, a) holdsb = c.

We say thatI1 is cancelable if and only if:

(Def. 8) For all elementsa, b, c of D such thatI1(a, b) = I1(a, c) or I1(b, a) = I1(c, a) holdsb = c.

We say thatI1 has uniquely decomposable unity if and only if:

(Def. 9) I1 has a unity and for all elementsa, b of D such thatI1(a, b) = 1(I1) holds a = b and
b = 1(I1) .

We now state three propositions:

(1) LetD be a non empty set andf be a binary operation onD. Then f is invertible if and only
if f is left invertible and right invertible.

(2) Let D be a non empty set andf be a binary operation onD. Then f is cancelable if and
only if f is left cancelable and right cancelable.

(3) Let f be a binary operation on{x}. Then

(i) f = {〈〈x, x〉〉} 7−→ x, and

(ii) f is commutative, associative, idempotent, invertible, and cancelable and has a unity and
uniquely decomposable unity.
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2. SEMIGROUPS

We adopt the following convention:G denotes a non empty groupoid,D denotes a non empty set,
anda, b, c, r, l denote elements ofG.

Let I1 be a non empty groupoid. Let us observe thatI1 is unital if and only if:

(Def. 10) The multiplication ofI1 has a unity.

Let us considerG. Let us observe thatG is commutative if and only if:

(Def. 11) The multiplication ofG is commutative.

Let us observe thatG is associative if and only if:

(Def. 12) The multiplication ofG is associative.

Let I1 be a non empty groupoid. We say thatI1 is idempotent if and only if:

(Def. 13) The multiplication ofI1 is idempotent.

We say thatI1 is left invertible if and only if:

(Def. 14) The multiplication ofI1 is left invertible.

We say thatI1 is right invertible if and only if:

(Def. 15) The multiplication ofI1 is right invertible.

We say thatI1 is invertible if and only if:

(Def. 16) The multiplication ofI1 is invertible.

We say thatI1 is left cancelable if and only if:

(Def. 17) The multiplication ofI1 is left cancelable.

We say thatI1 is right cancelable if and only if:

(Def. 18) The multiplication ofI1 is right cancelable.

We say thatI1 is cancelable if and only if:

(Def. 19) The multiplication ofI1 is cancelable.

We say thatI1 has uniquely decomposable unity if and only if:

(Def. 20) The multiplication ofI1 has uniquely decomposable unity.

Let us observe that there exists a non empty groupoid which is unital, commutative, associative,
cancelable, idempotent, invertible, constituted functions, constituted finite sequences, and strict and
has uniquely decomposable unity.

One can prove the following propositions:

(4) If G is unital, then1the multiplication ofG is a unity w.r.t. the multiplication ofG.

(5) G is unital iff for everya holds1the multiplication ofG ·a = a anda·1the multiplication ofG = a.

(6) G is unital iff there existsa such that for everyb holdsa·b = b andb·a = b.

(9)1 G is idempotent iff for everya holdsa·a = a.

(10) G is left invertible iff for all a, b there existsl such thatl ·a = b.

(11) G is right invertible iff for alla, b there existsr such thata· r = b.

1 The propositions (7) and (8) have been removed.
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(12) G is invertible iff for all a, b there existr, l such thata· r = b andl ·a = b.

(13) G is left cancelable iff for alla, b, c such thata·b = a·c holdsb = c.

(14) G is right cancelable iff for alla, b, c such thatb·a = c·a holdsb = c.

(15) G is cancelable iff for alla, b, c such thata·b = a·c or b·a = c·a holdsb = c.

(16) G has uniquely decomposable unity if and only if the following conditions are satisfied:

(i) the multiplication ofG has a unity, and

(ii) for all elementsa, b of G such thata · b = 1the multiplication ofG holds a = b and b =
1the multiplication ofG .

(17) SupposeG is associative. ThenG is invertible if and only if the following conditions are
satisfied:

(i) G is unital, and

(ii) the multiplication ofG has an inverse operation.

Let us note that every non empty groupoid which is associative and group-like is also invertible
and every non empty groupoid which is associative and invertible is also group-like.

One can verify the following observations:

∗ every non empty groupoid which is invertible is also left invertible and right invertible,

∗ every non empty groupoid which is left invertible and right invertible is also invertible,

∗ every non empty groupoid which is cancelable is also left cancelable and right cancelable,

∗ every non empty groupoid which is left cancelable and right cancelable is also cancelable,
and

∗ every non empty groupoid which is associative and invertible is also unital and cancelable.

3. MONOIDS

In the sequelM is a non empty multiplicative loop structure.
Let I1 be a non empty multiplicative loop structure. Let us observe thatI1 is well unital if and

only if:

(Def. 21) The unity ofI1 is a unity w.r.t. the multiplication ofI1.

Next we state the proposition

(18) M is well unital iff for every elementa of M holds (the unity ofM) ·a = a anda· the unity
of M = a.

Let us observe that every non empty multiplicative loop structure which is well unital is also
unital.

One can prove the following proposition

(19) Let M be a non empty multiplicative loop structure. SupposeM is well unital. Then the
unity of M = 1the multiplication ofM .

Let A be a non empty set, letmbe a binary operation onA, and letu be an element ofA. Observe
that〈A,m,u〉 is non empty.

One can check that there exists a non empty multiplicative loop structure which is well unital,
commutative, associative, cancelable, idempotent, invertible, unital, constituted functions, consti-
tuted finite sequences, and strict and has uniquely decomposable unity.

A monoid is a well unital associative non empty multiplicative loop structure.
Let G be a groupoid. A multiplicative loop structure is said to be a monoidal extension ofG if:
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(Def. 22) The groupoid of it= the groupoid ofG.

Let G be a non empty groupoid. Note that every monoidal extension ofG is non empty.
The following proposition is true

(20) LetM be a monoidal extension ofG. Then

(i) the carrier ofM = the carrier ofG,

(ii) the multiplication ofM = the multiplication ofG, and

(iii) for all elementsa, b of M and for all elementsa′, b′ of G such thata = a′ andb = b′ holds
a·b = a′ ·b′.

Let G be a groupoid. One can verify that there exists a monoidal extension ofG which is strict.
Next we state the proposition

(21) LetG be a non empty groupoid andM be a monoidal extension ofG. Then

(i) if G is unital, thenM is unital,

(ii) if G is commutative, thenM is commutative,

(iii) if G is associative, thenM is associative,

(iv) if G is invertible, thenM is invertible,

(v) if G has uniquely decomposable unity, thenM has uniquely decomposable unity, and

(vi) if G is cancelable, thenM is cancelable.

Let G be a constituted functions groupoid. Note that every monoidal extension ofG is consti-
tuted functions.

Let G be a constituted finite sequences groupoid. Observe that every monoidal extension ofG
is constituted finite sequences.

Let G be a unital non empty groupoid. One can verify that every monoidal extension ofG is
unital.

Let G be an associative non empty groupoid. Observe that every monoidal extension ofG is
associative.

Let G be a commutative non empty groupoid. Observe that every monoidal extension ofG is
commutative.

Let G be an invertible non empty groupoid. One can verify that every monoidal extension ofG
is invertible.

Let G be a cancelable non empty groupoid. Observe that every monoidal extension ofG is
cancelable.

Let G be a non empty groupoid with uniquely decomposable unity. One can check that every
monoidal extension ofG has uniquely decomposable unity.

Let G be a unital non empty groupoid. Note that there exists a monoidal extension ofG which
is well unital and strict.

Next we state the proposition

(22) For every unital non empty groupoidG and for all well unital strict monoidal extensions
M1, M2 of G holdsM1 = M2.

4. SUBSYSTEMS

Let G be a groupoid. A groupoid is called a subsystem ofG if:

(Def. 23) The multiplication of it≤ the multiplication ofG.

Let G be a groupoid. Observe that there exists a subsystem ofG which is strict.
Let G be a non empty groupoid. Observe that there exists a subsystem ofG which is strict and

non empty.
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Let G be a unital non empty groupoid. Note that there exists a non empty subsystem ofG which
is unital, associative, commutative, cancelable, idempotent, invertible, and strict and has uniquely
decomposable unity.

Let G be a groupoid. A multiplicative loop structure is said to be a monoidal subsystem ofG if
it satisfies the conditions (Def. 24).

(Def. 24)(i) The multiplication of it≤ the multiplication ofG, and

(ii) for every multiplicative loop structureM such thatG = M holds the unity of it= the unity
of M.

Let G be a groupoid. Note that there exists a monoidal subsystem ofG which is strict.
Let G be a non empty groupoid. Note that there exists a monoidal subsystem ofG which is strict

and non empty.
Let M be a multiplicative loop structure. Let us note that the monoidal subsystem ofM can be

characterized by the following (equivalent) condition:

(Def. 25) The multiplication of it≤ the multiplication ofM and the unity of it= the unity ofM.

Let G be a well unital non empty multiplicative loop structure. Note that there exists a non empty
monoidal subsystem ofG which is well unital, associative, commutative, cancelable, idempotent,
invertible, and strict and has uniquely decomposable unity.

Next we state the proposition

(23) For every groupoidG holds every monoidal subsystem ofG is a subsystem ofG.

Let G be a groupoid and letM be a monoidal extension ofG. We see that the subsystem ofM is
a subsystem ofG.

Let G1 be a groupoid and letG2 be a subsystem ofG1. We see that the subsystem ofG2 is a
subsystem ofG1.

Let G1 be a groupoid and letG2 be a monoidal subsystem ofG1. We see that the subsystem of
G2 is a subsystem ofG1.

Let G be a groupoid and letM be a monoidal subsystem ofG. We see that the monoidal
subsystem ofM is a monoidal subsystem ofG.

Next we state the proposition

(24) G is a subsystem ofG andM is a monoidal subsystem ofM.

In the sequelH is a non empty subsystem ofG andN is a non empty monoidal subsystem ofG.
One can prove the following propositions:

(25) The carrier ofH ⊆ the carrier ofG and the carrier ofN ⊆ the carrier ofG.

(26) LetG be a non empty groupoid andH be a non empty subsystem ofG. Then the multipli-
cation ofH = (the multiplication ofG)�[: the carrier ofH, the carrier ofH :].

(27) For all elementsa, b of H and for all elementsa′, b′ of G such thata = a′ andb = b′ holds
a·b = a′ ·b′.

(28) LetH1, H2 be non empty subsystems ofG. Suppose the carrier ofH1 = the carrier ofH2.
Then the groupoid ofH1 = the groupoid ofH2.

(29) Let H1, H2 be non empty monoidal subsystems ofM. Suppose the carrier ofH1 = the
carrier ofH2. Then the multiplicative loop structure ofH1 = the multiplicative loop structure
of H2.

(30) LetH1, H2 be non empty subsystems ofG. Suppose the carrier ofH1 ⊆ the carrier ofH2.
ThenH1 is a subsystem ofH2.

(31) Let H1, H2 be non empty monoidal subsystems ofM. Suppose the carrier ofH1 ⊆ the
carrier ofH2. ThenH1 is a monoidal subsystem ofH2.
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(32) SupposeG is unital and1the multiplication ofG ∈ the carrier ofH. Then H is unital and
1the multiplication ofG = 1the multiplication ofH .

(33) For every well unital non empty multiplicative loop structureM holds every non empty
monoidal subsystem ofM is well unital.

(34) If G is commutative, thenH is commutative.

(35) If G is associative, thenH is associative.

(36) If G is idempotent, thenH is idempotent.

(37) If G is cancelable, thenH is cancelable.

(38) Suppose1the multiplication ofG ∈ the carrier ofH and G has uniquely decomposable unity.
ThenH has uniquely decomposable unity.

(39) LetM be a well unital non empty multiplicative loop structure with uniquely decomposable
unity. Then every non empty monoidal subsystem ofM has uniquely decomposable unity.

Let G be a constituted functions non empty groupoid. Observe that every non empty subsystem
of G is constituted functions and every non empty monoidal subsystem ofG is constituted functions.

Let G be a constituted finite sequences non empty groupoid. Observe that every non empty
subsystem ofG is constituted finite sequences and every non empty monoidal subsystem ofG is
constituted finite sequences.

Let M be a well unital non empty multiplicative loop structure. One can verify that every non
empty monoidal subsystem ofM is well unital.

Let G be a commutative non empty groupoid. Observe that every non empty subsystem ofG is
commutative and every non empty monoidal subsystem ofG is commutative.

Let G be an associative non empty groupoid. One can verify that every non empty subsystem of
G is associative and every non empty monoidal subsystem ofG is associative.

Let G be an idempotent non empty groupoid. Note that every non empty subsystem ofG is
idempotent and every non empty monoidal subsystem ofG is idempotent.

Let G be a cancelable non empty groupoid. One can check that every non empty subsystem of
G is cancelable and every non empty monoidal subsystem ofG is cancelable.

Let M be a well unital non empty multiplicative loop structure with uniquely decomposable
unity. One can check that every non empty monoidal subsystem ofM has uniquely decomposable
unity.

In this article we present several logical schemes. The schemeSubStrEx1deals with a non
empty groupoidA and a non empty subsetB of A , and states that:

There exists a strict non empty subsystemH of A such that the carrier ofH = B
provided the following requirement is met:

• For all elementsx, y of B holdsx ·y∈ B.
The schemeSubStrEx2deals with a non empty groupoidA and a unary predicateP , and states

that:
There exists a strict non empty subsystemH of A such that for every elementx of A
holdsx∈ the carrier ofH if and only if P [x]

provided the parameters meet the following conditions:
• For all elementsx, y of A such thatP [x] andP [y] holdsP [x ·y], and
• There exists an elementx of A such thatP [x].

The schemeMonoidalSubStrEx1deals with a non empty multiplicative loop structureA and a
non empty subsetB of A , and states that:

There exists a strict non empty monoidal subsystemH of A such that the carrier of
H = B

provided the parameters meet the following conditions:
• For all elementsx, y of B holdsx ·y∈ B, and
• The unity ofA ∈ B.

The schemeMonoidalSubStrEx2deals with a non empty multiplicative loop structureA and a
unary predicateP , and states that:
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There exists a strict non empty monoidal subsystemM of A such that for every
elementx of A holdsx∈ the carrier ofM if and only if P [x]

provided the following conditions are met:
• For all elementsx, y of A such thatP [x] andP [y] holdsP [x ·y], and
• P [the unity ofA ].

Let us considerG, a, b. Thena·b is an element ofG. We introducea⊗b as a synonym ofa·b.

5. THE EXAMPLES OF MONOIDS OF NUMBERS

The unital associative invertible commutative cancelable strict non empty groupoid〈R,+〉 is defined
by:

(Def. 26) 〈R,+〉= 〈R,+R〉.

We now state several propositions:

(40)(i) The carrier of〈R,+〉= R,

(ii) the multiplication of〈R,+〉= +R, and

(iii) for all elementsa, b of 〈R,+〉 and for all real numbersx, y such thata= x andb= y holds
a·b = x+y.

(41) x is an element of〈R,+〉 iff x is a real number.

(42) 1the multiplication of〈R,+〉 = 0.

(43) LetN be a non empty subsystem of〈R,+〉, a, b be elements ofN, andx, y be real numbers.
If a = x andb = y, thena·b = x+y.

(44) For every unital non empty subsystemN of 〈R,+〉 holds1the multiplication ofN = 0.

Let G be a unital non empty groupoid. Observe that every non empty subsystem ofG which is
associative and invertible is also unital, cancelable, and group-like.

Z+ is a unital invertible strict non empty subsystem of〈R,+〉.
One can prove the following two propositions:

(46)2 For every strict non empty subsystemG of 〈R,+〉 holdsG = Z+ iff the carrier ofG = Z.

(47) x is an element ofZ+ iff x is an integer.

The unital strict non empty subsystem〈N,+〉 of Z+ with uniquely decomposable unity is de-
fined by:

(Def. 27) The carrier of〈N,+〉= N.

(Def. 28) 〈N,+,0〉 is a well unital strict non empty monoidal extension of〈N,+〉.

The binary operation+N onN is defined as follows:

(Def. 29) +N = the multiplication of〈N,+〉.

One can prove the following propositions:

(49)3 〈N,+〉= 〈N,+N〉.

(50) x is an element of〈N,+,0〉 iff x is a natural number.

(51) For all natural numbersn1, n2 and for all elementsm1, m2 of 〈N,+,0〉 such thatn1 = m1

andn2 = m2 holdsm1 ·m2 = n1 +n2.

2 The proposition (45) has been removed.
3 The proposition (48) has been removed.
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(52) 〈N,+,0〉= 〈N,+N,0〉.

(53) +N = +R�([:N, N :] qua set) and+N = (+Z)�([:N, N :] qua set).

(54)(i) 0 is a unity w.r.t.+N,

(ii) +N has a unity,

(iii) 1+N = 0,

(iv) +N is commutative,

(v) +N is associative, and

(vi) +N has uniquely decomposable unity.

The unital commutative associative strict non empty groupoid〈R, ·〉 is defined as follows:

(Def. 30) 〈R, ·〉= 〈R, ·R〉.

Next we state several propositions:

(55)(i) The carrier of〈R, ·〉= R,

(ii) the multiplication of〈R, ·〉= ·R, and

(iii) for all elementsa, b of 〈R, ·〉 and for all real numbersx, y such thata = x andb = y holds
a·b = x ·y.

(56) x is an element of〈R, ·〉 iff x is a real number.

(57) 1the multiplication of〈R,·〉 = 1.

(58) LetN be a non empty subsystem of〈R, ·〉, a, b be elements ofN, andx, y be real numbers.
If a = x andb = y, thena·b = x ·y.

(60)4 For every unital non empty subsystemN of 〈R, ·〉 holds 1the multiplication ofN = 0 or
1the multiplication ofN = 1.

The unital strict non empty subsystem〈N, ·〉 of 〈R, ·〉 with uniquely decomposable unity is de-
fined as follows:

(Def. 31) The carrier of〈N, ·〉= N.

(Def. 32) 〈N, ·,1〉 is a well unital strict non empty monoidal extension of〈N, ·〉.

The binary operation·N onN is defined as follows:

(Def. 33) ·N = the multiplication of〈N, ·〉.

One can prove the following propositions:

(61) 〈N, ·〉= 〈N, ·N〉.

(62) For all natural numbersn1, n2 and for all elementsm1, m2 of 〈N, ·〉 such thatn1 = m1 and
n2 = m2 holdsm1 ·m2 = n1 ·n2.

(63) 1the multiplication of〈N,·〉 = 1.

(64) For all natural numbersn1, n2 and for all elementsm1, m2 of 〈N, ·,1〉 such thatn1 = m1 and
n2 = m2 holdsm1 ·m2 = n1 ·n2.

(65) 〈N, ·,1〉= 〈N, ·N,1〉.

(66) ·N = ·R�([:N, N :] qua set).

4 The proposition (59) has been removed.
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(67)(i) 1 is a unity w.r.t.·N,

(ii) ·N has a unity,

(iii) 1·N = 1,

(iv) ·N is commutative,

(v) ·N is associative, and

(vi) ·N has uniquely decomposable unity.

6. THE MONOID OF FINITE SEQUENCES OVER THE SET

Let D be a non empty set. The functor〈D∗,a〉 yielding a unital associative cancelable constituted
finite sequences strict non empty groupoid with uniquely decomposable unity is defined as follows:

(Def. 34) The carrier of〈D∗,a〉= D∗ and for all elementsp, q of 〈D∗,a〉 holdsp⊗q = pa q.

Let us considerD.

(Def. 35) 〈D∗,a,ε〉 is a well unital strict non empty monoidal extension of〈D∗,a〉.

The concatenation ofD yields a binary operation onD∗ and is defined as follows:

(Def. 36) The concatenation ofD = the multiplication of〈D∗,a〉.

The following propositions are true:

(68) 〈D∗,a〉= 〈D∗, the concatenation ofD〉.

(69) 1the multiplication of〈D∗,a〉 = /0.

(70) The carrier of〈D∗,a,ε〉= D∗ and the multiplication of〈D∗,a,ε〉= the concatenation ofD
and the unity of〈D∗,a,ε〉= /0.

(71) For all elementsa, b of 〈D∗,a,ε〉 holdsa⊗b = aa b.

(72) For every non empty subsystemF of 〈D∗,a〉 and for all elementsp, q of F holdsp⊗q =
pa q.

(73) For every unital non empty subsystemF of 〈D∗,a〉 holds1the multiplication ofF = /0.

(74) LetF be a non empty subsystem of〈D∗,a〉. Suppose/0 is an element ofF . ThenF is unital
and1the multiplication ofF = /0.

(75) For all non empty setsA, B such thatA⊆ B holds〈A∗,a〉 is a subsystem of〈B∗,a〉.

(76) The concatenation ofD has a unity and1the concatenation ofD = /0 and the concatenation ofD
is associative.

7. MONOIDS OF MAPPINGS

Let X be a set. The semigroup of partial functions ontoX yielding a unital associative constituted
functions strict non empty groupoid is defined by the conditions (Def. 37).

(Def. 37)(i) The carrier of the semigroup of partial functions ontoX = X→̇X, and

(ii) for all elementsf , g of the semigroup of partial functions ontoX holds f ⊗g = f ◦g.

Let X be a set.

(Def. 38) The monoid of partial functions ontoX is a well unital strict non empty monoidal extension
of the semigroup of partial functions ontoX.

The composition ofX yielding a binary operation onX→̇X is defined by:
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(Def. 39) The composition ofX = the multiplication of the semigroup of partial functions ontoX.

One can prove the following propositions:

(77) x is an element of the semigroup of partial functions ontoX if and only if x is a partial
function fromX to X.

(78) 1the multiplication of the semigroup of partial functions ontoX = idX.

(79) LetF be a non empty subsystem of the semigroup of partial functions ontoX and f , g be
elements ofF . Then f ⊗g = f ◦g.

(80) LetF be a non empty subsystem of the semigroup of partial functions ontoX. Suppose idX
is an element ofF . ThenF is unital and1the multiplication ofF = idX.

(81) SupposeY ⊆ X. Then the semigroup of partial functions ontoY is a subsystem of the
semigroup of partial functions ontoX.

Let X be a set. The semigroup of functions ontoX yielding a unital strict non empty subsystem
of the semigroup of partial functions ontoX is defined by:

(Def. 40) The carrier of the semigroup of functions ontoX = XX.

Let X be a set.

(Def. 41) The monoid of functions ontoX is a well unital strict monoidal extension of the semigroup
of functions ontoX.

One can prove the following propositions:

(82) x is an element of the semigroup of functions ontoX iff x is a function fromX into X.

(83) The multiplication of the semigroup of functions ontoX = (the composition ofX)�[:XX,
XX :].

(84) 1the multiplication of the semigroup of functions ontoX = idX.

(85)(i) The carrier of the monoid of functions ontoX = XX,

(ii) the multiplication of the monoid of functions ontoX = (the composition ofX)�[:XX, XX :],
and

(iii) the unity of the monoid of functions ontoX = idX.

Let X be a set. The group of permutations ontoX yields a unital invertible strict non empty
subsystem of the semigroup of functions ontoX and is defined by the condition (Def. 42).

(Def. 42) Let f be an element of the semigroup of functions ontoX. Then f ∈ the carrier of the group
of permutations ontoX if and only if f is a permutation ofX.

We now state three propositions:

(86) x is an element of the group of permutations ontoX iff x is a permutation ofX.

(87)(i) 1the multiplication of the group of permutations ontoX = idX, and

(ii) 1the group of permutations ontoX = idX.

(88) For every elementf of the group of permutations ontoX holds f−1 = ( f qua function)−1.
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