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Summary. The goal of the article is to define the concept of monoid. In the prelim-
inary section we introduce the notion of some properties of binary operations. The second
section is concerning with structures with a set and a binary operation on this set: there is
introduced the notion corresponding to the notion of some properties of binary operations
and there are shown some useful clusters. Next, we are concerning with the structure with a
set, a binary operation on the set and with an element of the set. Such a structure is called
monoid iff the operation is associative and the element is a unity of the operation. In the
fourth section the concept of subsystems of monoid (group) is introduced. Subsystems are
submonoids (subgroups) or other parts of monoid (group) with are closed w.r.t. the operation.
There are presented facts on inheritness of some properties by subsystems. Finally, there are
constructed the examples of groups and monoids: the gy ( of real numbers with ad-
dition, the groupgZ™ of integers as the subsystem of the groBp+(, the semigroupN, +(
of natural numbers as the subsystenzof and the monoidN, +,0( of natural numbers with
addition and zero as monoidal extension of the semigjdug-(. The semigroups of real and
natural numbers with multiplication are also introduced. The monoid of finite sequences over
some set with concatenation as hinary operation and with empty sequence as neutral element
is defined in sixth section. Last section deals with monoids with the composition of func-
tions as the operation, i.e. with the monoid of partial and total functions and the monoid of
permutations.

MML ldentifier: MONOID_0.

WWW: http://mizar.orqg/JFM/Vold/monoid_0.html

The articles([15],[17],[[21],[18],[[10],[17] [11][[22] [18],[[4],[2],.[23],[I6],[[5],[[3], 9], [[19], [[11],
[12], [15], [14], [2C], and [[13] provide the notation and terminology for this paper.

1. BINARY OPERATIONS PRELIMINARY

In this paper, X, Y are sets.
Let G be a 1-sorted structure. A binary operation®is a binary operation on the carrier Gf
Letl; be a 1-sorted structure. We say thgaits constituted functions if and only if:

(Def. 1) Every element df; is a function.
We say that; is constituted finite sequences if and only if:
(Def. 2) Every element df; is a finite sequence.

Let us observe that there exists a 1-sorted structure which is constituted functions and there
exists a 1-sorted structure which is constituted finite sequences.

1 © Association of Mizar Users
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Let X be a constituted functions 1-sorted structure. Observe that every elemérs foinction-
like and relation-like.

Let us note that every 1-sorted structure which is constituted finite sequences is also constituted
functions.

Let us mention that every groupoid which is constituted finite sequences is also constituted
functions.

Let X be a constituted finite sequences 1-sorted structure. One can verify that every element of
X is finite sequence-like.

LetD be a set and lgp, q be finite sequences of elementdbfThenp™ gis an element oD*.

Letg, f be functions. We introducéo g as a synonym of - g.

Let X be a set and lag, f be functions fronX into X. Thenf - g is a function fromX into X.

Let X be a set and leg, f be permutations oX. Thenf - gis a permutation oX.

Let D be a non empty set and latbe a binary operation of. We say that; is left invertible
if and only if:

(Def. 3) For all elements, b of D there exists an elemehof D such that(l, a) = b.
We say that; is right invertible if and only if:

(Def. 4) For all elements, b of D there exists an elemenbf D such thats(a, r) =b.
We say that; is invertible if and only if:

(Def. 5) For all elements, b of D there exist elements | of D such thatly(a, r) = b andl4(l,
a)="h

We say that; is left cancelable if and only if:
(Def. 6) For all elements, b, ¢ of D such that1(a, b) = 11(a, ¢) holdsb =c.
We say that; is right cancelable if and only if:
(Def. 7) For all elements, b, ¢ of D such thats(b, a) = l1(c, &) holdsb =c.
We say that; is cancelable if and only if:
(Def. 8) For all elements, b, c of D such thats(a, b) = 11(a, c) orl1(b, a) = I1(c, a) holdsb = c.
We say that; has uniquely decomposable unity if and only if:

(Def. 9) 11 has a unity and for all elemengs b of D such thatl1(a, b) = 1,y holdsa = b and
b=1q)-
We now state three propositions:

(1) LetD be anon empty set anfdbe a binary operation db. Thenf is invertible if and only
if fis leftinvertible and right invertible.

(2) LetD be a non empty set anidbe a binary operation ob. Thenf is cancelable if and
only if f is left cancelable and right cancelable.

(3) Letf be abinary operation ofx}. Then

) f={{xx}— xand

(i)  f is commutative, associative, idempotent, invertible, and cancelable and has a unity and
uniquely decomposable unity.
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2. SEMIGROUPS

We adopt the following conventiorG denotes a nhon empty groupoid,denotes a non empty set,
anda, b, ¢, r, | denote elements @.
LetI; be a non empty groupoid. Let us observe thas unital if and only if:

(Def. 10) The multiplication of; has a unity.
Let us consideG. Let us observe thdb is commutative if and only if:

(Def. 11) The multiplication of5 is commutative.

Let us observe thds is associative if and only if:
(Def. 12) The multiplication of5 is associative.

LetI; be a non empty groupoid. We say thats idempotent if and only if:

(Def. 13) The multiplication of; is idempotent.

We say that; is left invertible if and only if:
(Def. 14) The multiplication of; is left invertible.

We say that; is right invertible if and only if:
(Def. 15) The multiplication of; is right invertible.

We say that; is invertible if and only if:
(Def. 16) The multiplication of; is invertible.

We say that; is left cancelable if and only if:
(Def. 17) The multiplication of; is left cancelable.

We say that; is right cancelable if and only if:
(Def. 18) The multiplication of; is right cancelable.

We say that; is cancelable if and only if:
(Def. 19) The multiplication of; is cancelable.

We say that, has uniquely decomposable unity if and only if:

(Def. 20) The multiplication of; has uniquely decomposable unity.

Let us observe that there exists a non empty groupoid which is unital, commutative, associative,
cancelable, idempotent, invertible, constituted functions, constituted finite sequences, and strict and

has uniquely decomposable unity.
One can prove the following propositions:

(4) If Gis unital, theNlie multipiication ofG iS @ unity w.r.t. the multiplication o6.
(5) Gisunital iff for everya holds e muttiplication ofG -8 = @ anda- Iie muliplication ofG = a.
(6) Gis unital iff there exist@ such that for every holdsa-b=bandb-a="h.
(QH G is idempotent iff for everya holdsa-a=a.
(10) Gisleftinvertible iff for all a, b there exist$ such that -a=h.

(11) Gisright invertible iff for all a, b there exists such thata-r = b.

1 The propositions (7) and (8) have been removed.
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(12) Gis invertible iff for all a, b there exist, | such thag-r =bandl-a=Dh.
(13) Gis left cancelable iff for all, b, c such thata-b=a-choldsb=c.

(14) Gisright cancelable iff for alg, b, ¢ such thab-a= c-aholdsb =c.

(15) Gis cancelable iff for alk, b, csuch that-b=a-corb-a=c-aholdsb=c.

(16) G has uniquely decomposable unity if and only if the following conditions are satisfied:
(i) the multiplication ofG has a unity, and
(i)  for all elementsa, b of G such thata:b = lie mutiplication ofc holdsa =b andb =

Lthe multiplication ofG -

(17) Suppos& is associative. The is invertible if and only if the following conditions are
satisfied:
() Gisunital, and
(i)  the multiplication ofG has an inverse operation.
Let us note that every non empty groupoid which is associative and group-like is also invertible

and every non empty groupoid which is associative and invertible is also group-like.
One can verify the following observations:

x every non empty groupoid which is invertible is also left invertible and right invertible,
x every non empty groupoid which is left invertible and right invertible is also invertible,
x every non empty groupoid which is cancelable is also left cancelable and right cancelable,

x every non empty groupoid which is left cancelable and right cancelable is also cancelable,
and

x every non empty groupoid which is associative and invertible is also unital and cancelable.

3. MoNoIDS

In the sequeM is a non empty multiplicative loop structure.
Let I3 be a non empty multiplicative loop structure. Let us observelthatwell unital if and
only if:

(Def. 21) The unity ol is a unity w.r.t. the multiplication off;.

Next we state the proposition

(18) M is well unital iff for every elemena of M holds (the unity oM) -a = a anda- the unity
ofM=a

Let us observe that every non empty multiplicative loop structure which is well unital is also
unital.
One can prove the following proposition

(19) LetM be a non empty multiplicative loop structure. Suppbbtés well unital. Then the
unity ofM = Lthe multiplication ofM -

Let Abe a non empty set, letbe a binary operation of, and letu be an element oh. Observe
that(A, m,u) is non empty.

One can check that there exists a non empty multiplicative loop structure which is well unital,
commutative, associative, cancelable, idempotent, invertible, unital, constituted functions, consti-
tuted finite sequences, and strict and has uniquely decomposable unity.

A monoid is a well unital associative non empty multiplicative loop structure.

Let G be a groupoid. A multiplicative loop structure is said to be a monoidal extensi@rifof
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(Def. 22) The groupoid of i= the groupoid ofG.

Let G be a non empty groupoid. Note that every monoidal extensi@isfnon empty.
The following proposition is true

(20) LetM be a monoidal extension &. Then
(i) the carrier ofM = the carrier ofG,
(i) the multiplication ofM = the multiplication ofG, and

(iiiy  for all elementsa, b of M and for all elementd’, by of G such thata= & andb = b’ holds
a-b=a-b.

Let G be a groupoid. One can verify that there exists a monoidal extensi@wiich is strict.
Next we state the proposition

(21) LetG be a non empty groupoid amd be a monoidal extension &. Then
(i) if Gisunital, thenM is unital,
(i) if Gis commutative, theM is commutative,
(i) if Gis associative, thehl is associative,
(iv) if Gisinvertible, therM is invertible,
(v) if Ghas uniquely decomposable unity, tHdrhas uniquely decomposable unity, and
(vi) if Gis cancelable, thell is cancelable.

Let G be a constituted functions groupoid. Note that every monoidal extensiGrnotonsti-
tuted functions.

Let G be a constituted finite sequences groupoid. Observe that every monoidal extenSion of
is constituted finite sequences.

Let G be a unital non empty groupoid. One can verify that every monoidal extensiGnof
unital.

Let G be an associative non empty groupoid. Observe that every monoidal extenstois of
associative.

Let G be a commutative non empty groupoid. Observe that every monoidal extens®is of
commutative.

Let G be an invertible non empty groupoid. One can verify that every monoidal extens®n of
is invertible.

Let G be a cancelable non empty groupoid. Observe that every monoidal extensiis of
cancelable.

Let G be a non empty groupoid with uniquely decomposable unity. One can check that every
monoidal extension & has uniquely decomposable unity.

Let G be a unital non empty groupoid. Note that there exists a monoidal extensi@mvbich
is well unital and strict.

Next we state the proposition

(22) For every unital non empty groupot and for all well unital strict monoidal extensions
M1, M2 of G hO|dSM1 = Mo.

4, SUBSYSTEMS

Let G be a groupoid. A groupoid is called a subsysten®af:
(Def. 23) The multiplication of it< the multiplication ofG.

Let G be a groupoid. Observe that there exists a subsysténgfich is strict.
Let G be a non empty groupoid. Observe that there exists a subsyst@mwbich is strict and
non empty.
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Let G be a unital non empty groupoid. Note that there exists a non empty subsyst@whath
is unital, associative, commutative, cancelable, idempotent, invertible, and strict and has uniquely
decomposable unity.

Let G be a groupoid. A multiplicative loop structure is said to be a monoidal subsysténif of
it satisfies the conditions (Def. 24).

(Def. 24)()) The multiplication of it< the multiplication ofG, and

(i)  for every multiplicative loop structur®& such thats = M holds the unity of it= the unity
of M.

Let G be a groupoid. Note that there exists a monoidal subsyst&axwgfich is strict.

Let G be a non empty groupoid. Note that there exists a monoidal subsystemluth is strict
and non empty.

Let M be a multiplicative loop structure. Let us note that the monoidal subsyst&incah be
characterized by the following (equivalent) condition:

(Def. 25) The multiplication of it the multiplication ofM and the unity of it= the unity ofM.

Let G be a well unital non empty multiplicative loop structure. Note that there exists a non empty
monoidal subsystem d@ which is well unital, associative, commutative, cancelable, idempotent,
invertible, and strict and has uniquely decomposable unity.

Next we state the proposition

(23) For every groupoi holds every monoidal subsystem®fis a subsystem db.

Let G be a groupoid and lé¥ be a monoidal extension &. We see that the subsystemdfis
a subsystem 0.

Let G; be a groupoid and leb; be a subsystem d@b;. We see that the subsystem®f is a
subsystem 06;.

Let G; be a groupoid and léb; be a monoidal subsystem Gf. We see that the subsystem of
Gy is a subsystem db;.

Let G be a groupoid and leM be a monoidal subsystem & We see that the monoidal
subsystem oM is a monoidal subsystem &.

Next we state the proposition

(24) Gis a subsystem db andM is a monoidal subsystem bf.

In the sequeH is a non empty subsystem GfandN is a non empty monoidal subsystem&f
One can prove the following propositions:

(25) The carrier oH C the carrier ofG and the carrier oN C the carrier ofG.

(26) LetG be a non empty groupoid artl be a non empty subsystem®@f Then the multipli-
cation ofH = (the multiplication ofG) [[.the carrier oH, the carrier oH .

(27) For all elements, b of H and for all elementg’, b’ of G such thae = & andb = by holds
a-b=4a-b.

(28) LetH1, H> be non empty subsystems @f Suppose the carrier ¢f; = the carrier ofH,.
Then the groupoid dofi; = the groupoid oH,.

(29) LetHi, Hy be non empty monoidal subsystemshf Suppose the carrier d¢f; = the
carrier ofH,. Then the multiplicative loop structure b, = the multiplicative loop structure
of H».

(30) LetH1, H> be non empty subsystems @f Suppose the carrier ¢f; C the carrier ofH,.
ThenH;j is a subsystem dfl,.

(31) LetHi, Hy be non empty monoidal subsystemshf Suppose the carrier ¢f; C the
carrier ofH,. ThenH; is a monoidal subsystem bf,.
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(32) SupposeG is unital andle mutiplication ofc € the carrier ofH. ThenH is unital and
lthe multiplication ofG — line multiplication ofH -

(33) For every well unital non empty multiplicative loop structiMeholds every non empty
monoidal subsystem & is well unital.

(34) If Gis commutative, theinl is commutative.
(35) If Gis associative, theH is associative.
(36) If Gisidempotent, thehl is idempotent.
(87) If Gis cancelable, theH is cancelable.

(38) SupposeEline mutipiication oic € the carrier ofH and G has uniquely decomposable unity.
ThenH has uniquely decomposable unity.

(39) LetM be a well unital non empty multiplicative loop structure with uniquely decomposable
unity. Then every non empty monoidal subsystenvidias uniquely decomposable unity.

Let G be a constituted functions non empty groupoid. Observe that every non empty subsystem
of Gis constituted functions and every non empty monoidal subsysté&nisofonstituted functions.

Let G be a constituted finite sequences non empty groupoid. Observe that every non empty
subsystem of5 is constituted finite sequences and every non empty monoidal subsys@rs of
constituted finite sequences.

Let M be a well unital non empty multiplicative loop structure. One can verify that every non
empty monoidal subsystem bf is well unital.

Let G be a commutative non empty groupoid. Observe that every non empty subsysgeis of
commutative and every non empty monoidal subsystef isfcommutative.

Let G be an associative hon empty groupoid. One can verify that every non empty subsystem of
G is associative and every non empty monoidal subsyste@isfassociative.

Let G be an idempotent non empty groupoid. Note that every non empty subsyst@ns of
idempotent and every non empty monoidal subsystef isfidempotent.

Let G be a cancelable non empty groupoid. One can check that every nhon empty subsystem of
Gis cancelable and every non empty monoidal subsyste&isicancelable.

Let M be a well unital non empty multiplicative loop structure with uniquely decomposable
unity. One can check that every non empty monoidal subsystdvhltds uniquely decomposable
unity.

In this article we present several logical schemes. The scl@urh&trExldeals with a non
empty groupoidq and a non empty subs@tof 4, and states that:

There exists a strict non empty subsystdmof 4 such that the carrier df = B
provided the following requirement is met:

e For all elementg, y of B holdsx-y € B.

The schem&ubStrEx2ieals with a non empty groupoid and a unary predicatg, and states
that:

There exists a strict non empty subsystdrof 2 such that for every elemeriof 4
holdsx € the carrier o if and only if P[]
provided the parameters meet the following conditions:

e For all elements, y of 4 such thatP[x] andP[y] holdsP[x-y], and

e There exists an elemerbf 4 such thatP[x].

The schemdlonoidalSubStrExtleals with a non empty multiplicative loop structuleand a
non empty subses of 4, and states that:

There exists a strict non empty monoidal subsyskeof 4 such that the carrier of
H=a3
provided the parameters meet the following conditions:

e For all elements, y of B holdsx-y € B, and

e The unity of4 € B.

The scheméonoidalSubStrEx2eals with a non empty multiplicative loop structuleand a
unary predicate?, and states that:
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There exists a strict non empty monoidal subsysinof 4 such that for every
elementx of 4 holdsx € the carrier oM if and only if P[x]
provided the following conditions are met:
e For all elements, y of 4 such thatP[x] andP[y] holdsP[x-y], and
e P[the unity of4].
Let us conside6, a, b. Thena-bis an element of5. We introducea® b as a synonym cé.- b.

5. THE EXAMPLES OF MONOIDS OF NUMBERS

The unital associative invertible commutative cancelable strict non empty gro{ipeid is defined
by:
(Def. 26) (R,+) = (R, +r).
We now state several propositions:
(40)(i) The carrier of R, +) =R,
(i) the multiplication of (R, +) = +g, and

(iiiy  for all elementsa, b of (R, +) and for all real numbers y such that = x andb =y holds
a-b=x+y.

(41) xis an element ofRR, +) iff xis a real number.

(42) Line multiplication of(R,+) — 0.

(43) LetN be a non empty subsystem(@,+), a, b be elements dfl, andx, y be real numbers.
If a=xandb=y, thena-b=x+y.

(44) For every unital non empty subsystéhof (R, +) holds1ine muttiplication ofN = O.

Let G be a unital non empty groupoid. Observe that every non empty subsys@mwioich is
associative and invertible is also unital, cancelable, and group-like.

Z* is a unital invertible strict non empty subsystem&f +).

One can prove the following two propositions:

(46E] For every strict non empty subsystéof (R, +) holdsG = Z* iff the carrier ofG = Z.
(47) xis an element oZ™ iff xis an integer.

The unital strict non empty subsystefii, +) of Z* with uniquely decomposable unity is de-
fined by:

(Def. 27) The carrier ofN,+) =N.
(Def. 28) (N,+,0) is a well unital strict non empty monoidal extensior(®f +).

The binary operatior-y onN is defined as follows:
(Def. 29) +y = the multiplication of(N, +).
One can prove the following propositions:
@9 (N, +) = (N, +x).
(50) xis an element ofN,+,0) iff xis a natural number.

(51) For all natural numbens;, ny and for all elementsy, mp of (N, +,0) such thath; = my
andny = np holdsmy - mp = ng +no.

2 The proposition (45) has been removed.
3 The proposition (48) has been removed.
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(52) <N,+,O> = <Na +N7O>'
(53) +n=+r[([N,N]quaset) andty = (+z)[(} N, N] qua sed.
(54)()) Ois aunity w.r.t+y,
(i) 4y has a unity,
(i) L1y, =0,
(iv) 4y is commutative,
(v) 4y isassociative, and
(vi) 4+ has uniquely decomposable unity.
The unital commutative associative strict non empty group8id) is defined as follows:
Next we state several propositions:
(55)(1)) The carrier of R, ) =R,
(i) the multiplication of (R, -) = -, and

(iiiy  for all elementsa, b of (R, -) and for all real numbers, y such thata = x andb = y holds
a-b=x-y.

(56) xis an element ofR,-) iff X is a real number.
(57) Line multiplication of(R,") = 1

(58) LetN be a non empty subsystem(@®, -), a, b be elements dN, andx, y be real numbers.
If a=xandb =y, thena-b=x-y.

(GOE] For every unital non empty subsystel of (R,-) holds 1ie mutiplication otn = O OF
line multiplication ofN — 1

The unital strict non empty subsystgil, -) of (R, -) with uniquely decomposable unity is de-
fined as follows:

(Def. 31) The carrier ofN,-) = N.
(Def. 32) (N,-,1) is a well unital strict non empty monoidal extensior(df -).
The binary operatiory onN is defined as follows:
(Def. 33) -y = the multiplication of(N, -).
One can prove the following propositions:
(61) (N,)=(N,n).

(62) For all natural numberns;, n, and for all elementsy, m, of (N, -) such thain; = my and
N, = mp holdsmy -mp = ng - ny.

(63) Line multiplication of(N,-) = 1

(64) For all natural numbers, ny and for all elementsy, mp of (N, -, 1) such than; = m; and
Nz = mp holdsmy - mp = ny - ny.

(65) <N"7l> = <N7'Nal>'
(66) -~=-r[([N,N]quased.

4 The proposition (59) has been removed.
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(67)()) 1isaunity w.r.t.y,
(i) -y hasaunity,
(i) 1y=1
(iv) -y is commutative,
(v) -y is associative, and
(vi) -y has uniquely decomposable unity.

6. THE MONOID OF FINITE SEQUENCES OVER THE SET

Let D be a non empty set. The funct@*, ™) yielding a unital associative cancelable constituted
finite sequences strict non empty groupoid with uniquely decomposable unity is defined as follows:

(Def. 34) The carrier ofD*,”) = D* and for all elementg, q of (D*,”) holdsp®g=p~q.
Let us consideD.
(Def. 35) (D*,",€) is a well unital strict non empty monoidal extension(bf, ™).
The concatenation d yields a binary operation oR* and is defined as follows:
(Def. 36) The concatenation &f = the multiplication of(D*, ™).

The following propositions are true:
(68) (D*,”) = (D*,the concatenation dd).
(69) Le multiplication of(D*,”) — 0.

(70) The carrier ofD*,~,€) = D* and the multiplication ofD*, ~, &) = the concatenation d
and the unity of D*,~, &) = 0.

(71) For all elements, b of (D*,~,€) holdsa@b=a"b.

(72) For every non empty subsystéirof (D*, ™) and for all element®, q of F holdsp® q=
pTa.
(73) For every unital non empty subsysténof (D*,~) holdsiine mutiplication off = 0.

(74) LetF be a non empty subsystem(@*, ). Suppos® is an element off. ThenF is unital
andlthe multiplication ofF = 0.

(75) For all non empty sets, B such thatA C B holds(A*, ™) is a subsystem ofB*, ™).
(76) The concatenation @ has a unity andine concatenation d = 0 and the concatenation of

is associative.

7. MONOIDS OF MAPPINGS

Let X be a set. The semigroup of partial functions oKtgielding a unital associative constituted
functions strict non empty groupoid is defined by the conditions (Def. 37).

(Def. 37)()) The carrier of the semigroup of partial functions oXte- X—X, and
(i)  for all elementsf, g of the semigroup of partial functions ontoholdsf @ g= f og.

Let X be a set.

(Def. 38) The monoid of partial functions ontois a well unital strict non empty monoidal extension
of the semigroup of partial functions ont

The composition oK yielding a binary operation oK—X is defined by:
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(Def. 39) The composition ok = the multiplication of the semigroup of partial functions oo
One can prove the following propositions:

(77) xis an element of the semigroup of partial functions oXtd and only if x is a partial
function fromX to X.

(78) Lthe multiplication of the semigroup of partial functions oxto— idX-

(79) LetF be a non empty subsystem of the semigroup of partial functionsXatad f, g be
elements ofF. Thenf ®g= fog.

(80) LetF be a non empty subsystem of the semigroup of partial functiontnBuppose igd
is an element oF . ThenF is unital andlie mutiplication off = idx.

(81) Supposér C X. Then the semigroup of partial functions ontois a subsystem of the
semigroup of partial functions on.

Let X be a set. The semigroup of functions otgielding a unital strict non empty subsystem
of the semigroup of partial functions ontois defined by:

(Def. 40) The carrier of the semigroup of functions okte= XX.
Let X be a set.

(Def. 41) The monoid of functions ondis a well unital strict monoidal extension of the semigroup
of functions ontoX.

One can prove the following propositions:
(82) xis an element of the semigroup of functions oKtdf x is a function fromX into X.
(83) The multiplication of the semigroup of functions on¢o= (the composition oK) [[. XX,
XX
(84) Lihe multiplication of the semigroup of functions onto=— idX-

(85)(i) The carrier of the monoid of functions onto= XX,

(i) the multiplication of the monoid of functions ond= (the composition oK) [ XX, XX,
and

(iii)  the unity of the monoid of functions ontd = idy.

Let X be a set. The group of permutations otgsields a unital invertible strict non empty
subsystem of the semigroup of functions oKtand is defined by the condition (Def. 42).

(Def. 42) Letf be an element of the semigroup of functions aXtarhenf € the carrier of the group
of permutations ontX if and only if f is a permutation oX.

We now state three propositions:
(86) xis an element of the group of permutations oXtdf x is a permutation oX.

(87) (') Lthe multiplication of the group of permutations oo— idX7 and
(ii) 1the group of permutations ont§ — idX-

(88) For every elemerit of the group of permutations on¥holdsf 1 = (f quafunction) 1.



(1

(2

(Bl
4

(5]

6]
(7]

8

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

MONOIDS 12

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numidetsnal of Formalized Mathematicg, 1989./http://mizar.
org/JFM/Voll/nat_1.html}

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite seqdemced.of Formalized Mathematics
1,1989.http://mizar.org/JFM/Voll/finseq_1.htmll

Czestaw Bylnski. Binary operationsJournal of Formalized Mathematic$, 1989.http://mizar.org/JFM/Voll/binop_1.html}

Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematics, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Functions from a set to a sédburnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/funct_
2. htmll

Czestaw Bylhski. Partial functionsJournal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/partfunl.htmll

Czestaw Byliski. Some basic properties of setdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html.

Czestaw Bylhski. Binary operations applied to finite sequencésurnal of Formalized Mathematic®, 1990.http://mizar.org/
JFM/Vol2/finseqop.html.

Czestaw Bylhski. Finite sequences and tuples of elements of a non-emptyJeetmal of Formalized Mathematic, 1990.http:
//mizar.org/JFM/Vol2/finseq_2.htmll

Krzysztof Hryniewiecki. Basic properties of real numbed®urnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/real_ 1.html.

Eugeniusz Kusak, Wojciech Laozuk, and Michat Muzalewski. Abelian groups, fields and vector spadesrnal of Formalized
Mathematicsl1, 1989/http://mizar.orqg/JFM/Voll/vectsp_1.html.

Michat Muzalewski. Construction of rings and left-, right-, and bi-modules over a dogrnal of Formalized Mathematicg, 1990.
http://mizar.org/JFM/Vol2/vectsp_2.htmll

Dariusz Surowik. Cyclic groups and some of their properties — paltlirnal of Formalized Mathematic8, 1991.http://mizar.
org/JFM/Vol3/gr_cy_1.html.

Andrzej Trybulec. Binary operations applied to functiorgurnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/funcop_l.html,

Andrzej Trybulec. Semilattice operations on finite subsdtsurnal of Formalized Mathematicg, 1989.http://mizar.org/JFM/
Voll/setwiseo.html|

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http://mizar.org/JFM/
Axiomatics/tarski.html.

Andrzej Trybulec. Tuples, projections and Cartesian productstnal of Formalized Mathematics, 1989 http://mizar.org/JFM/
Voll/mcart_1.html}

Andrzej Trybulec. Subsets of real numbedsurnal of Formalized MathematicAddenda, 2008http://mizar.org/JFM/Addenda/
numbers.htmll

Michat J. Trybulec. Integerslournal of Formalized Mathematic&, 1990.http://mizar.org/JFM/Vol2/int_1.htmll
Wojciech A. Trybulec. Groupslournal of Formalized Mathematic8, 1990/http://mizar.org/JFM/Vol2/group_1.html,
Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http: //mizar.org/JFM/Voll/subset_1.htmll

Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/relat_1.html}

Edmund Woronowicz. Relations defined on setkurnal of Formalized Mathematicd, 1989. http://mizar.orqg/JFM/Voll/
relset_1.html.

Received December 29, 1992

Published January 2, 2004


http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/binop_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/finseqop.html
http://mizar.org/JFM/Vol2/finseqop.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol1/real_1.html
http://mizar.org/JFM/Vol1/real_1.html
http://mizar.org/JFM/Vol1/vectsp_1.html
http://mizar.org/JFM/Vol2/vectsp_2.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/setwiseo.html
http://mizar.org/JFM/Vol1/setwiseo.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol2/group_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html

	monoids By grzegorz bancerek

