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Summary. We define the category of left modules over an associative ring. The carri-
ers of the modules are included in a universum. The universum is a parameter of the category.

MML Identifier: MODCAT_1.

WWW: http://mizar.org/JFM/Vol3/modcat_1.html

The articles[[10],[[5],[[13],[[14],12],13],0[1R],[16],14],M11],19].0r].18], and 1] provide the notation
and terminology for this paper.

For simplicity, we adopt the following conventior; y denote setd) denotes a non empty set,
U; denotes a universal clag®denotes a ring, an@, H denote left modules oveR.

Let us consideR. A non empty set is called a non empty set of left-moduleR iff

(Def. 1) Every element of it is a strict left module ouer

In the sequeV is a non empty set of left-modules Bf

Let us consideR, V. We see that the elementdfis a left module oveR.

Let us consideR, V. Note that there exists an elemendbivhich is strict.

Let us consideR. A non empty set is called a non empty set of morphisms of left-modulBs of
if:

(Def. 2) Every element of it is a strict left module morphisnRof

Let us consideR and letM be a non empty set of morphisms of left-modulefRofVe see that
the element oM is a left module morphism dR.

Let us consideR and letM be a non empty set of morphisms of left-moduledkofOne can
verify that there exists an elementMfwhich is strict.

The following proposition is true

(BH For every strict left module morphisfof R holds{f} is a non empty set of morphisms
of left-modules oR.

Let us consideR, G, H. A non empty set of morphisms of left-moduleshis said to be a non
empty set of morphisms of left-modules fra&into H if:

(Def. 3) Every element of it is a strict morphism fra&to H.

We now state two propositions:

(4) D is a non empty set of morphisms of left-modules fr@vinto H if and only if every
element oD is a strict morphism front to H.

1 The propositions (1) and (2) have been removed.

1 © Association of Mizar Users
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(5) Letf be a strict morphism fron® to H. Then{f} is a non empty set of morphisms of
left-modules fromG into H.

Let us consideR, G, H. The functor Morph&G, H) yields a non empty set of morphisms of
left-modules fromG into H and is defined by:

(Def. 4) x e MorphgG,H) iff xis a strict morphism fron® to H.

Let us consideR, G, H and letM be a non empty set of morphisms of left-modules fi@rimto
H. We see that the elementlgfis a morphism fronG to H.
Let us consideg, y, R. The predicate X, y,Ris defined by the condition (Def. 5).

(Def.5) There exist sets, X2 such that
()  x=(x1,x2), and

(i) there exists a strict left modulé overR such thaty = G andx; = the loop structure o6
andx; = the left multiplication ofG.

Next we state two propositions:
(6) For all setx, y1, y» such that ByX,y1,Rand RpX,y2, R holdsy; = y».

(7) Forevery; there existssuch thak € {(G, f) : Granges over elements of GroupQyj),
f ranges over elements gp} | the carier oR {0} 11 and pyx RO, R.

Let us considet;, R. The functor LModObjU1, R) yields a set and is defined by the condition
(Def. 6).

(Def. 6) Letgivery. Theny € LModObj(Uy,R) if and only if there existg such thak € {(G, f) : G
ranges over elements of Group@bj), f ranges over elements ¢p} | the carier ok {0}]1 gng
PObxa Y, R

One can prove the following proposition
(8) RO € LModObj(U1,R).

Let us considet;, R. Note that LModObjU1,R) is non empty.
We now state the proposition

(9) Every element of LModOljy1,R) is a strict left module oveR.

Let us considets, R. Then LModObjU1, R) is a non empty set of left-modules Bf
Let us consideR, V. The functor Morph¥ yielding a non empty set of morphisms of left-
modules ofRis defined by:

(Def. 7) For everyx holdsx € MorphsV iff there exist strict element&, H of V such thatx is a
strict morphism fronG to H.

Let us consideR, V and letF be an element of Morphé The functor dorfF yielding an
element ol is defined by:

(Def. 8) domF = domF.
The functor cotF yields an element of and is defined as follows:
(Def. 9) codF = codF.

Let us consideR, V and letG be an element 0f. The functor § yields a strict element of
MorphsV and is defined by:

(Def. 10) &g = lg.

Let us consideR, V. The functor donV yielding a function from Morph¥ intoV is defined as
follows:
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(Def. 11) For every elemerftof MorphsV holds(domV)(f) = donf f.
The functor cod/ yields a function from Morphg intoV and is defined by:
(Def. 12) For every elemerft of MorphsV holds(codV)(f) = cod f.
The functor { yielding a function fronV into MorphsV is defined as follows:
(Def. 13) For every elemer@ of V holds I, (G) = Ig.
The following three propositions are true:

(10) Letg, f be elements of Morphé Suppose dohg = cod f. Then there exist strict elements
G1, Gy, G3 of V such thag is a morphism fronG, to Gz and f is a morphism fron; to G,.

(11) For all elements, f of MorphsV such that dorig = cod f holdsg- f € Morphsv.
(12) For all elementg, f of MorphsV such that dorg = codf holdsg- f € Morphsv.
Let us consideR, V. The functor comp yields a partial function froni Morphsv, MorphsV |
to MorphsV and is defined by the conditions (Def. 14).

(Def. 14)(i) For all elementg, f of MorphsV holds(g, f) € domcompV iff dom’g=cod f, and
(i)  for all elementsg, f of MorphsV such that{(g, f) € domcomgp/ holds (compV)({g,
f))=g-f.
Next we state the proposition
(13) For all elementg, f of MorphsV holds{g, f) € domcom}¥ iff domg = codf.
Let us considet;, R The functor LModC&U;,R) yields a strict category structure and is
defined as follows:
(Def. 15) LModCatU1,R) = (LModObj(U1, R), Morphs LModObjU1, R),dom LModObjU1, R),cod LModObjU;, R),
comp LModObjU1, R), I\ modobjuy.R)) -
One can prove the following propositions:

(14) For all morphismsf, g of LModCatU;,R) holds (g, f) € dom(the composition of
LModCatUs,R)) iff domg = codf.

(15) Letf be a morphism of LModC#v;,R), f’ be an element of Morphs LModQl;,R), b
be an object of LModC4t);,R), andb’ be an element of LModOWy;,R). Then
(i) fisastrict element of Morphs LModOfj1,R),
(i) ' is a morphism of LModCqU;,R),
(i)  bis a strict element of LModOKJ1,R), and
(iv) b'is an object of LModCdtJ;,R).
(16) For every objech of LModCatU;,R) and for every elemerif of LModObj(U;,R) such
thatb=b' holds id, = Iy.
(17) Forevery morphisnf of LModCat{U;, R) and for every elemerift of Morphs LModObjU;, R)
such thatf = f’ holds domf = domf’ and codf = codf’.
(18) Letf, gbe morphisms of LModCét)1,R) andf’, g’ be elements of Morphs LModOtyj;, R)
such thatf = f" andg=¢'. Then
(i) domg= codf iff domg' = codf’,
(i) domg= codf iff (¢, f') € domcompLModOhjU1,R),
(i) ifdomg=codf,theng-f =g -f’,
(iv) domf = domgiff dom f’ = domg’, and
(v) codf =codgiff cod f' = codg'.

Let us considets, R. Note that LModCaUJ;, R) is category-like.
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