Introduction to Modal Propositional Logic

Alicia de la Cruz Universidad Politecnica de Madrid

MML Identifier: MODAL_1.

 $WWW: \verb|http://mizar.org/JFM/Vol3/modal_1.html||$

The articles [13], [12], [8], [16], [15], [11], [14], [17], [5], [18], [4], [9], [6], [10], [1], [7], [2], [3], and [19] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x denotes a set, n, m, k denote natural numbers, t_1 denotes a tree decorated with elements of $[:\mathbb{N},\mathbb{N}:]$, w, s, t denote finite sequences of elements of \mathbb{N} , and D denotes a non empty set.

Let Z be a tree. The root of Z yielding an element of Z is defined as follows:

(Def. 1) The root of $Z = \emptyset$.

Let us consider D and let T be a tree decorated with elements of D. The root of T yielding an element of D is defined by:

(Def. 2) The root of T = T (the root of dom T).

The following propositions are true:

- (3)¹ If $n \neq m$, then $\langle n \rangle$ and $\langle m \rangle \cap s$ are not \subseteq -comparable.
- (4) For every s such that $s \neq \emptyset$ there exist w, n such that $s = \langle n \rangle \cap w$.
- (5) If $n \neq m$, then $\langle n \rangle \not\prec \langle m \rangle \cap s$.
- (6) If $n \neq m$, then $\langle n \rangle \npreceq \langle m \rangle \cap s$.
- (7) $\langle n \rangle \not\prec \langle m \rangle$.
- (9)² The elementary tree of $1 = \{\emptyset, \langle 0 \rangle\}$.
- (10) The elementary tree of $2 = \{\emptyset, \langle 0 \rangle, \langle 1 \rangle\}.$
- (11) For every tree *Z* and for all *n*, *m* such that $n \le m$ and $\langle m \rangle \in Z$ holds $\langle n \rangle \in Z$.
- (12) If $w \cap t \prec w \cap s$, then $t \prec s$.
- (13) $t_1 \in \mathbb{N}^* \rightarrow [:\mathbb{N}, \mathbb{N}:].$
- (15)³ For all trees Z, Z_1 , Z_2 and for every element z of Z such that Z with-replacement(z, Z_1) = Z with-replacement(z, Z_2) holds $Z_1 = Z_2$.

¹ The propositions (1) and (2) have been removed.

² The proposition (8) has been removed.

³ The proposition (14) has been removed.

- (16) For all trees Z, Z_1 , Z_2 decorated with elements of D and for every element z of dom Z such that Z with-replacement(z, Z_1) = Z with-replacement(z, Z_2) holds $Z_1 = Z_2$.
- (17) Let Z_1 , Z_2 be trees and p be a finite sequence of elements of \mathbb{N} . Suppose $p \in Z_1$. Let v be an element of Z_1 with-replacement(p, Z_2) and w be an element of Z_1 . If v = w and $w \prec p$, then $\operatorname{succ} v = \operatorname{succ} w$.
- (18) Let Z_1 , Z_2 be trees and p be a finite sequence of elements of \mathbb{N} . Suppose $p \in Z_1$. Let v be an element of Z_1 with-replacement (p, Z_2) and w be an element of Z_1 . If v = w and p and w are not \subseteq -comparable, then $\operatorname{succ} v = \operatorname{succ} w$.
- (19) Let Z_1 , Z_2 be trees and p be a finite sequence of elements of \mathbb{N} . Suppose $p \in Z_1$. Let v be an element of Z_1 with-replacement (p, Z_2) and w be an element of Z_2 . If $v = p \cap w$, then $\operatorname{succ} v \approx \operatorname{succ} w$.
- (20) Let Z_1 be a tree and p be a finite sequence of elements of \mathbb{N} . Suppose $p \in Z_1$. Let v be an element of Z_1 and w be an element of $Z_1 \upharpoonright p$. If $v = p \cap w$, then $\operatorname{succ} v \approx \operatorname{succ} w$.
- (22)⁴ For every finite tree Z such that the branch degree of the root of Z = 0 holds card Z = 1 and $Z = \{\emptyset\}$.
- (23) For every finite tree Z such that the branch degree of the root of Z = 1 holds succ (the root of Z) = $\{\langle 0 \rangle\}$.
- (24) For every finite tree Z such that the branch degree of the root of Z=2 holds succ (the root of $Z)=\{\langle 0\rangle,\langle 1\rangle\}$.

In the sequel s', w' are elements of \mathbb{N}^* . Next we state several propositions:

- (25) Let *Z* be a tree and *o* be an element of *Z*. Suppose $o \neq$ the root of *Z*. Then $Z \upharpoonright o \approx \{o \cap s' : o \cap s' \in Z\}$ and the root of $Z \notin \{o \cap w' : o \cap w' \in Z\}$.
- (26) For every finite tree Z and for every element o of Z such that $o \neq$ the root of Z holds $\operatorname{card}(Z \upharpoonright o) < \operatorname{card} Z$.
- (27) Let Z be a finite tree and z be an element of Z. If succ (the root of Z) = $\{z\}$, then Z = (the elementary tree of 1) with-replacement($\langle 0 \rangle, Z \upharpoonright z$).
- (28) Let Z be a finite tree decorated with elements of D and z be an element of dom Z. Suppose succ(the root of dom Z) = $\{z\}$ and dom Z is finite. Then Z = ((the elementary tree of 1) \longmapsto (the root of Z)) with-replacement($\langle 0 \rangle, Z \upharpoonright z$).
- (29) Let Z be a tree and x_1 , x_2 be elements of Z. Suppose Z is finite and $x_1 = \langle 0 \rangle$ and $x_2 = \langle 1 \rangle$ and succ (the root of Z) = $\{x_1, x_2\}$. Then Z = (the elementary tree of 2) with-replacement($\langle 0 \rangle, Z \upharpoonright x_1$) with-replacement($\langle 1 \rangle, Z \upharpoonright x_2$).
- (30) Let Z be a tree decorated with elements of D and x_1 , x_2 be elements of dom Z. Suppose dom Z is finite and $x_1 = \langle 0 \rangle$ and $x_2 = \langle 1 \rangle$ and succ (the root of dom Z) = $\{x_1, x_2\}$. Then Z = ((the elementary tree of 2) \longmapsto (the root of Z)) with-replacement($\langle 0 \rangle, Z \upharpoonright x_1$) with-replacement($\langle 1 \rangle, Z \upharpoonright x_2$).

The set V is defined as follows:

(Def. 3)
$$V = [: \{3\}, \mathbb{N}:].$$

Let us observe that V is non empty.

A variable is an element of \mathcal{V} .

The set C is defined as follows:

⁴ The proposition (21) has been removed.

(Def. 4) $C = [: \{0, 1, 2\}, \mathbb{N}:].$

Let us mention that C is non empty.

A connective is an element of C.

One can prove the following proposition

(31) C misses V.

In the sequel p, q denote variables.

Let T be a finite tree and let v be an element of T. Then the branch degree of v is a natural number.

Let *D* be a non empty set. A non empty set is called a non empty set of trees decorated with elements of *D* if:

(Def. 5) For every x such that $x \in \text{it holds } x \text{ is a tree decorated with elements of } D$.

Let D_0 be a non empty set and let D be a non empty set of trees decorated with elements of D_0 . We see that the element of D is a tree decorated with elements of D_0 .

The non empty set WFF of trees decorated with elements of $[:\mathbb{N},\mathbb{N}:]$ is defined by the conditions (Def. 6).

- (Def. 6)(i) For every tree x decorated with elements of $[:\mathbb{N},\mathbb{N}:]$ such that $x \in WFF$ holds x is finite, and
 - (ii) for every finite tree x decorated with elements of $[:\mathbb{N}, \mathbb{N}:]$ holds $x \in \text{WFF}$ iff for every element v of dom x holds the branch degree of $v \leq 2$ and if the branch degree of v = 0, then $x(v) = \langle 0, 0 \rangle$ or there exists k such that $x(v) = \langle 3, k \rangle$ and if the branch degree of v = 1, then $x(v) = \langle 1, 0 \rangle$ or $x(v) = \langle 1, 1 \rangle$ and if the branch degree of v = 2, then $x(v) = \langle 2, 0 \rangle$.

A MP-formula is an element of WFF.

Let us observe that every MP-formula is finite.

In the sequel A, A_1 , B, B_1 , C denote MP-formulae.

Let us consider A and let a be an element of dom A. Then $A \mid a$ is a MP-formula.

Let a be an element of C. The functor Arity(a) yielding a natural number is defined by:

(Def. 7) Arity(
$$a$$
) = a_1 .

Let D be a non empty set, let T, T_1 be trees decorated with elements of D, and let p be a finite sequence of elements of \mathbb{N} . Let us assume that $p \in \text{dom } T$. The functor $T(p \leftarrow T_1)$ yields a tree decorated with elements of D and is defined as follows:

(Def. 8)
$$T(p \leftarrow T_1) = T \text{ with-replacement}(p, T_1).$$

One can prove the following propositions:

- (32) ((The elementary tree of 1) \longmapsto (1,0)) with-replacement($\langle 0 \rangle$, A) is a MP-formula.
- (33) ((The elementary tree of 1) \longmapsto (1, 1)) with-replacement((0), A) is a MP-formula.
- (34) ((The elementary tree of 2) \longmapsto $\langle 2, 0 \rangle$) with-replacement($\langle 0 \rangle, A$) with-replacement($\langle 1 \rangle, B$) is a MP-formula.

Let us consider A. The functor $\neg A$ yielding a MP-formula is defined by:

(Def. 9)
$$\neg A = ((\text{the elementary tree of 1}) \longmapsto \langle 1, 0 \rangle) \text{ with-replacement}(\langle 0 \rangle, A).$$

The functor $\Box A$ yielding a MP-formula is defined by:

(Def. 10)
$$\Box A = (\text{(the elementary tree of 1)} \longmapsto \langle 1, 1 \rangle) \text{ with-replacement}(\langle 0 \rangle, A).$$

Let us consider *B*. The functor $A \wedge B$ yields a MP-formula and is defined by:

(Def. 11)
$$A \wedge B = (\text{(the elementary tree of 2)} \longmapsto \langle 2, 0 \rangle) \text{ with-replacement}(\langle 0 \rangle, A) \text{ with-replacement}(\langle 1 \rangle, B).$$

Let us consider A. The functor $\Diamond A$ yields a MP-formula and is defined as follows:

(Def. 12) $\Diamond A = \neg \Box \neg A$.

Let us consider *B*. The functor $A \lor B$ yielding a MP-formula is defined by:

(Def. 13) $A \lor B = \neg(\neg A \land \neg B)$.

The functor $A \Rightarrow B$ yielding a MP-formula is defined by:

(Def. 14) $A \Rightarrow B = \neg (A \land \neg B)$.

The following two propositions are true:

- (35) (The elementary tree of 0) $\longmapsto (3, n)$ is a MP-formula.
- (36) (The elementary tree of 0) $\longmapsto \langle 0, 0 \rangle$ is a MP-formula.

Let us consider p. The functor ${}^{@}p$ yields a MP-formula and is defined as follows:

(Def. 15) $p = \text{(the elementary tree of 0)} \mapsto p$.

One can prove the following propositions:

- (37) If ${}^{@}p = {}^{@}q$, then p = q.
- (38) If $\neg A = \neg B$, then A = B.
- (39) If $\Box A = \Box B$, then A = B.
- (40) If $A \wedge B = A_1 \wedge B_1$, then $A = A_1$ and $B = B_1$.

The MP-formula VERUM is defined as follows:

(Def. 16) VERUM = (the elementary tree of 0) $\longmapsto \langle 0, 0 \rangle$.

The following propositions are true:

- $(42)^5$ If carddom A = 1, then A = VERUM or there exists p such that $A = {}^{\textcircled{o}} p$.
- (43) If card dom $A \ge 2$, then there exists B such that $A = \neg B$ or $A = \square B$ or there exist B, C such that $A = B \land C$.
- (44) $\operatorname{card} \operatorname{dom} A < \operatorname{card} \operatorname{dom} \neg A$.
- (45) $\operatorname{card} \operatorname{dom} A < \operatorname{card} \operatorname{dom} \square A$.
- (46) $\operatorname{card} \operatorname{dom} A < \operatorname{card} \operatorname{dom} (A \wedge B)$ and $\operatorname{card} \operatorname{dom} B < \operatorname{card} \operatorname{dom} (A \wedge B)$.

Let I_1 be a MP-formula. We say that I_1 is atomic if and only if:

(Def. 17) There exists p such that $I_1 = {}^{@}p$.

We say that I_1 is negative if and only if:

(Def. 18) There exists A such that $I_1 = \neg A$.

We say that I_1 is necessitive if and only if:

(Def. 19) There exists A such that $I_1 = \Box A$.

We say that I_1 is conjunctive if and only if:

(Def. 20) There exist A, B such that $I_1 = A \wedge B$.

⁵ The proposition (41) has been removed.

One can check the following observations:

- there exists a MP-formula which is atomic,
- * there exists a MP-formula which is negative,
- * there exists a MP-formula which is necessitive, and
- * there exists a MP-formula which is conjunctive.

The scheme MP Ind concerns a unary predicate \mathcal{P} , and states that:

For every element A of WFF holds $\mathcal{P}[A]$

provided the following conditions are satisfied:

- $\mathcal{P}[VERUM]$,
- For every variable p holds $\mathcal{P}[^{@}p]$,
- For every element A of WFF such that $\mathcal{P}[A]$ holds $\mathcal{P}[\neg A]$,
- For every element A of WFF such that $\mathcal{P}[A]$ holds $\mathcal{P}[\Box A]$, and
- For all elements A, B of WFF such that $\mathcal{P}[A]$ and $\mathcal{P}[B]$ holds $\mathcal{P}[A \wedge B]$.

Next we state several propositions:

- (47) Let A be an element of WFF. Then
 - (i) A = VERUM, or
- (ii) A is an atomic MP-formula, a negative MP-formula, a necessitive MP-formula, and a conjunctive MP-formula.
- (48) A = VERUM or there exists p such that $A = {}^{\textcircled{a}}p$ or there exists B such that $A = \neg B$ or there exists B such that $A = \square B$ or there exist B, C such that $A = B \land C$.
- (49) ${}^{@}p \neq \neg A$ and ${}^{@}p \neq \Box A$ and ${}^{@}p \neq A \wedge B$.
- (50) $\neg A \neq \Box B$ and $\neg A \neq B \land C$.
- (51) $\Box A \neq B \land C$.
- (52) VERUM \neq [@] p and VERUM $\neq \neg A$ and VERUM $\neq \Box A$ and VERUM $\neq A \land B$.

The scheme MP Func Ex deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a unary functor \mathcal{F} yielding an element of \mathcal{A} , two unary functors \mathcal{G} and \mathcal{H} yielding elements of \mathcal{A} , and a binary functor I yielding an element of \mathcal{A} , and states that:

There exists a function f from WFF into \mathcal{A} such that

- (i) $f(VERUM) = \mathcal{B}$,
- (ii) for every variable p holds $f(^{@}p) = \mathcal{F}(p)$,
- (iii) for every element A of WFF holds $f(\neg A) = \mathcal{G}(f(A))$,
- iv) for every element A of WFF holds $f(\Box A) = \mathcal{H}(f(A))$, and
- (v) for all elements A, B of WFF holds $f(A \wedge B) = I(f(A), f(B))$

for all values of the parameters.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/trees_1. html.
- [3] Grzegorz Bancerek, König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.

- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [12] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/meart_1.html.
- [15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [18] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset 1.html.
- [19] Wojciech Zielonka. Preliminaries to the Lambek calculus. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/prelamb.html.

Received September 30, 1991

Published January 2, 2004