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The articles[[1B],[[1R],[[8],[[16],[[15],[[11],[14], 1271151/ 118] /4], 9], 16], 110] 1], [7], [],18],
and [19] provide the notation and terminology for this paper.

For simplicity, we use the following conventiordenotes a seh, m, k denote natural numbers,
t; denotes a tree decorated with elementsf N ], w, s, t denote finite sequences of elements of
N, andD denotes a non empty set.

LetZ be a tree. The root & yielding an element of is defined as follows:

(Def. 1) Theroot oZ = 0.

Let us consideb and letT be a tree decorated with elementdf The root ofT yielding an
element oD is defined by:

(Def. 2) The root off =T (the root of donT).
The following propositions are true:
(SH If n# m, then(n) and(m) ~ sare notC-comparable.
(4) Foreveryssuch thas# 0 there existv, n such thas= (n) ~w.
(5) Ifn#m, then(n) £ (m)~s.
(6) Ifn#m, then(n) #(m)"s.
@) () A (m).
(9E] The elementary tree of % {0, (0) }.
(10) The elementary tree of2 {0, (0), (1)}.
(11) For every tre@ and for alln, msuch than < mand(m) € Z holds(n) € Z.
(12) Ifw~t<w"s thent <s.
(13) 1 e N*S[N,NJ.

(15 For all treesZ, Z;, Z, and for every elemerzof Z such thaZ with-replacemerii, Z;) =
Zwith-replacemerii, Z,) holdsz; = Z,.

1 The propositions (1) and (2) have been removed.
2 The proposition (8) has been removed.
3 The proposition (14) has been removed.
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(16) For all tree<, Z;, Z, decorated with elements Bf and for every elemerzof domZ such
thatZwith-replacemerttz, Z;) = Zwith-replacemeriiz, Z,) holdsz; = Z».

(17) Letzy, Z, be trees angb be a finite sequence of elementshaf Supposep € Z;. Letv be
an element o¥Z; with-replacemertip, Z,) andw be an element of;. If v=w andw < p,
then suce = sucow.

(18) Letzy, Z» be trees angb be a finite sequence of elementsdaf Supposep € Z;. Let v be
an element o¥; with-replacemerfip, Z») andw be an element a;. If v=w andp andw
are notC-comparable, then suge= sucow.

(19) LetZ, Z» be trees ang be a finite sequence of elementsMf Supposep € Z;. Letv
be an element oZ; with-replacemerfip, Z;) andw be an element of,. If v=p~w, then
SUCOY A2 SUCOW.

(20) Letz; be atree ang be a finite sequence of elementdaf Suppose € Z;. Letv be an
element oZ; andw be an element a1 [p. If v= p~w, then suce =~ sucow.

(22@ For every finite treeZ such that the branch degree of the rooZof 0 holds card = 1
andZ = {0}.

(23) For every finite tre& such that the branch degree of the rooZcf 1 holds succ (the root
of Z) = {(0)}.

(24) For every finite tre& such that the branch degree of the rooZef 2 holds succ (the root
of Z) = {(0), (1)}

In the seque$, W are elements dfif*.
Next we state several propositions:

(25) LetZ be atree and be an element af. Suppose = the root ofZ. ThenZjo~ {0~ s :
0"s eZ}andtherootoZ ¢ {o~wW:0"W € Z}.

(26) For every finite tre& and for every elemend of Z such thato # the root ofZ holds
cardZ|o) < cardZ.

(27) LetZ be afinite tree andbe an element a. If succ(the root oZ) = {z}, thenZ = (the
elementary tree of 1) with-replaceméftt), Z|z).

(28) LetZ be a finite tree decorated with elementfoéndz be an element of do& Suppose
succ (the root of dor) = {z} and don¥ is finite. ThenZ = ((the elementary tree of 1)
— (the root ofZ)) with-replacemerft0),Z[z).

(29) LetZ be a tree andk, x be elements ofZ. SupposeZ is finite andx; = (0)
and x; = (1) and succ(the root oF) = {x1,X2}. Then Z = (the elementary tree of 2)
with-replacemer{t0), Z [x; ) with-replacemer{t{1), Z[xy).

(30) Let Z be a tree decorated with elements &f and x;, x> be elements of
domZ. Suppose dord is finite and x; = (0) and x; = (1) and succ(the root
of domZ) = {xi,x2}. Then Z = ((the elementary tree of 2)— (the root of
Z))with-replacemer{t{0), Z[x; ) with-replacemer{{1), Zxy).

The set? is defined as follows:

(Def.3) 7 =[{3},NI.

Let us observe that’ is non empty.
A variable is an element of’.
The setC is defined as follows:

4 The proposition (21) has been removed.
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(Def.4) c=1{0,1,2}, N1.

Let us mention that” is non empty.
A connective is an element @f.
One can prove the following proposition

(31) ¢ missesV.

In the sequep, q denote variables.

Let T be a finite tree and let be an element of . Then the branch degree wfis a natural
number.

Let D be a non empty set. A non empty set is called a non empty set of trees decorated with
elements oD if:

(Def. 5) For every such thai € it holdsx is a tree decorated with elementsiaf

Let Dg be a non empty set and IBtbe a non empty set of trees decorated with elemendg of
We see that the element Dfis a tree decorated with elementsiy.

The non empty set WFF of trees decorated with element8loN ] is defined by the conditions
(Def. 6).

(Def. 6)(i) For every tree decorated with elements pN, N ] such thak € WFF holdsx s finite,
and

(i) for every finite treex decorated with elements @iN, N holdsx € WFF iff for every
elementv of domx holds the branch degree vk 2 and if the branch degree wf= 0, then
x(v) = (0, 0) or there exist& such thai(v) = (3, k) and if the branch degree uf= 1, then
x(v) = (1, 0) or x(v) = (1, 1) and if the branch degree of= 2, thenx(v) = (2, 0).

A MP-formula is an element of WFF.

Let us observe that every MP-formula is finite.

In the sequeh, A1, B, B1, C denote MP-formulae.

Let us consideA and leta be an element of do¥ ThenAjais a MP-formula.

Letabe an element of. The functor Aritya) yielding a natural number is defined by:

(Def. 7) Arity(a) = a;.

Let D be a non empty set, 18t, Ty be trees decorated with elementdhfand letp be a finite

sequence of elements Bf. Let us assume that € domT. The functorT (p « T) yields a tree
decorated with elements Bfand is defined as follows:

(Def. 8) T(p+« T1) = Twith-replacemertp, T).

One can prove the following propositions:

(32) ((The elementary tree of B— (1, 0)) with-replacemer{t0),A) is a MP-formula.
(33) ((The elementary tree of H)— (1, 1)) with-replacemerft0),A) is a MP-formula.

(34) ((The elementary tree of 2— (2, 0)) with-replacemer{t0), A) with-replacemerft1), B)
is a MP-formula.

Let us consideA. The functor-A yielding a MP-formula is defined by:

(Def. 9) —A= ((the elementary tree of B— (1, 0)) with-replacemer{t{0),A).
The functorJA yielding a MP-formula is defined by:

(Def. 10) TA = ((the elementary tree of H— (1, 1)) with-replacemerff0), A).
Let us consideB. The functorAA B yields a MP-formula and is defined by:

(Def. 11) AAB= ((the elementary tree of 2}— (2, 0)) with-replacemer{t0), A) with-replacemert 1), B).
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Let us consideA. The functorQA yields a MP-formula and is defined as follows:
(Def. 12) QA= -0O-A.
Let us consideB. The functorAvV B yielding a MP-formula is defined by:
(Def. 13) AVB=—(-AA-B).
The functorA = B yielding a MP-formula is defined by:
(Def. 14) A= B=-(AA-B).
The following two propositions are true:
(35) (The elementary tree of 8)— (3, n) is a MP-formula.
(36) (The elementary tree of 8)— (0, 0) is a MP-formula.

Let us considep. The functor@p yields a MP-formula and is defined as follows:
(Def. 15) @p = (the elementary tree of )— p.
One can prove the following propositions:
(37) 1f@p=@q thenp=q.
(38) If ~A=-B,thenA=B.
(39) If OA= 0B, thenA=B.
(40) 1f AAB=A;ABy, thenA=A; andB = B;.
The MP-formula VERUM is defined as follows:
(Def. 16) VERUM= (the elementary tree of 8}— (0, 0).
The following propositions are true:
(42E] If carddomA = 1, thenA = VERUM or there existg such thata = @p.

(43) If carddonmA > 2, then there existB such thatA = —-B or A= 1B or there exisB, C such
thatA=BAC.

(44) carddomh < carddom-A.
(45) carddomi\ < carddoniJA.
(46) carddomi < carddonfAA B) and carddorB < carddonfAA B).

Letl; be a MP-formula. We say thét is atomic if and only if:
(Def. 17) There existg such thal, = @p.
We say that; is negative if and only if:
(Def. 18) There existé such that; = —A.
We say that; is necessitive if and only if:
(Def. 19) There existé such that; = OA.
We say that; is conjunctive if and only if:

(Def. 20) There exisf, B such that; = AAB.

5 The proposition (41) has been removed.
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One can check the following observations:
x there exists a MP-formula which is atomic,
x there exists a MP-formula which is negative,
x there exists a MP-formula which is necessitive, and
x there exists a MP-formula which is conjunctive.

The schem®P Ind concerns a unary predicafe and states that:
For every elemenA of WFF holdsP[A]

provided the following conditions are satisfied:
P[VERUM],
For every variable holds?[@p],
For every elemenA of WFF such thatP[A] holdsP[-A],
For every elemenA of WFF such thatP[A] holds?[JA], and
For all element#\, B of WFF such thatP[A] and?[B] holdsP[AA B].
Next we state several propositions:

(47) LetAbe an element of WFF. Then
() A=VERUM, or
(i)  Ais an atomic MP-formula, a negative MP-formula, a necessitive MP-formula, and a
conjunctive MP-formula.

(48) A= VERUM or there existp such thaiA = @p or there exist such thaiA = —B or there
existsB such thatA = [IB or there exisB, C such thath = BAC.

(49) @p+#£-Aand@p+#£OAand@p+£AAB.

(50) —-A+#0OBand-A#BAC.

(51) OA#BAC.

(52) VERUM# @pand VERUM# —A and VERUM A and VERUM=# A B.

The schem&P Func Exdeals with a non empty set, an elementB of 4, a unary functorf
yielding an element afl, two unary functors; and# yielding elements of2, and a binary functor
I yielding an element off, and states that:

There exists a functioh from WFF into 4 such that
() f(VERUM) =B,
(i) for every variablep holds f (@p) = 7 (p),
(i)  for every elemen® of WFF holdsf (—A) = G(f(A)),
(iv) for every elemenA of WFF holdsf (OA) = #H(f(A)), a
(v) for all elementsA, B of WFF holdsf(AAB) = f
for all values of the parameters.
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