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The articles [13], [12], [8], [16], [15], [11], [14], [17], [5], [18], [4], [9], [6], [10], [1], [7], [2], [3],
and [19] provide the notation and terminology for this paper.

For simplicity, we use the following convention:x denotes a set,n, m, k denote natural numbers,
t1 denotes a tree decorated with elements of[:N, N :], w, s, t denote finite sequences of elements of
N, andD denotes a non empty set.

Let Z be a tree. The root ofZ yielding an element ofZ is defined as follows:

(Def. 1) The root ofZ = /0.

Let us considerD and letT be a tree decorated with elements ofD. The root ofT yielding an
element ofD is defined by:

(Def. 2) The root ofT = T(the root of domT).

The following propositions are true:

(3)1 If n 6= m, then〈n〉 and〈m〉a s are not⊆-comparable.

(4) For everys such thats 6= /0 there existw, n such thats= 〈n〉a w.

(5) If n 6= m, then〈n〉⊀ 〈m〉a s.

(6) If n 6= m, then〈n〉� 〈m〉a s.

(7) 〈n〉⊀ 〈m〉.

(9)2 The elementary tree of 1= { /0,〈0〉}.

(10) The elementary tree of 2= { /0,〈0〉,〈1〉}.

(11) For every treeZ and for alln, m such thatn≤m and〈m〉 ∈ Z holds〈n〉 ∈ Z.

(12) If wa t ≺ wa s, thent ≺ s.

(13) t1 ∈ N∗→̇[:N, N :].

(15)3 For all treesZ, Z1, Z2 and for every elementz of Z such thatZwith-replacement(z,Z1) =
Zwith-replacement(z,Z2) holdsZ1 = Z2.

1 The propositions (1) and (2) have been removed.
2 The proposition (8) has been removed.
3 The proposition (14) has been removed.
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(16) For all treesZ, Z1, Z2 decorated with elements ofD and for every elementzof domZ such
thatZwith-replacement(z,Z1) = Zwith-replacement(z,Z2) holdsZ1 = Z2.

(17) LetZ1, Z2 be trees andp be a finite sequence of elements ofN. Supposep∈ Z1. Let v be
an element ofZ1with-replacement(p,Z2) andw be an element ofZ1. If v = w andw≺ p,
then succv = succw.

(18) LetZ1, Z2 be trees andp be a finite sequence of elements ofN. Supposep∈ Z1. Let v be
an element ofZ1with-replacement(p,Z2) andw be an element ofZ1. If v = w and p andw
are not⊆-comparable, then succv = succw.

(19) Let Z1, Z2 be trees andp be a finite sequence of elements ofN. Supposep ∈ Z1. Let v
be an element ofZ1with-replacement(p,Z2) andw be an element ofZ2. If v = pa w, then
succv≈ succw.

(20) LetZ1 be a tree andp be a finite sequence of elements ofN. Supposep∈ Z1. Let v be an
element ofZ1 andw be an element ofZ1�p. If v = pa w, then succv≈ succw.

(22)4 For every finite treeZ such that the branch degree of the root ofZ = 0 holds cardZ = 1
andZ = { /0}.

(23) For every finite treeZ such that the branch degree of the root ofZ = 1 holds succ(the root
of Z) = {〈0〉}.

(24) For every finite treeZ such that the branch degree of the root ofZ = 2 holds succ(the root
of Z) = {〈0〉,〈1〉}.

In the sequels′, w′ are elements ofN∗.
Next we state several propositions:

(25) LetZ be a tree ando be an element ofZ. Supposeo 6= the root ofZ. ThenZ�o≈ {oa s′ :
oa s′ ∈ Z} and the root ofZ /∈ {oa w′ : oa w′ ∈ Z}.

(26) For every finite treeZ and for every elemento of Z such thato 6= the root ofZ holds
card(Z�o) < cardZ.

(27) LetZ be a finite tree andz be an element ofZ. If succ(the root ofZ) = {z}, thenZ = (the
elementary tree of 1) with-replacement(〈0〉,Z�z).

(28) LetZ be a finite tree decorated with elements ofD andz be an element of domZ. Suppose
succ(the root of domZ) = {z} and domZ is finite. ThenZ = ((the elementary tree of 1)
7−→ (the root ofZ))with-replacement(〈0〉,Z�z).

(29) Let Z be a tree andx1, x2 be elements ofZ. SupposeZ is finite and x1 = 〈0〉
and x2 = 〈1〉 and succ(the root ofZ) = {x1,x2}. Then Z = (the elementary tree of 2)
with-replacement(〈0〉,Z�x1)with-replacement(〈1〉,Z�x2).

(30) Let Z be a tree decorated with elements ofD and x1, x2 be elements of
domZ. Suppose domZ is finite and x1 = 〈0〉 and x2 = 〈1〉 and succ(the root
of domZ) = {x1,x2}. Then Z = ((the elementary tree of 2)7−→ (the root of
Z))with-replacement(〈0〉,Z�x1)with-replacement(〈1〉,Z�x2).

The setV is defined as follows:

(Def. 3) V = [:{3}, N :].

Let us observe thatV is non empty.
A variable is an element ofV .
The setC is defined as follows:

4 The proposition (21) has been removed.
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(Def. 4) C = [:{0,1,2}, N :].

Let us mention thatC is non empty.
A connective is an element ofC .
One can prove the following proposition

(31) C missesV .

In the sequelp, q denote variables.
Let T be a finite tree and letv be an element ofT. Then the branch degree ofv is a natural

number.
Let D be a non empty set. A non empty set is called a non empty set of trees decorated with

elements ofD if:

(Def. 5) For everyx such thatx∈ it holdsx is a tree decorated with elements ofD.

Let D0 be a non empty set and letD be a non empty set of trees decorated with elements ofD0.
We see that the element ofD is a tree decorated with elements ofD0.

The non empty set WFF of trees decorated with elements of[:N, N :] is defined by the conditions
(Def. 6).

(Def. 6)(i) For every treex decorated with elements of[:N, N :] such thatx∈WFF holdsx is finite,
and

(ii) for every finite treex decorated with elements of[:N, N :] holds x ∈ WFF iff for every
elementv of domx holds the branch degree ofv≤ 2 and if the branch degree ofv = 0, then
x(v) = 〈〈0, 0〉〉 or there existsk such thatx(v) = 〈〈3, k〉〉 and if the branch degree ofv = 1, then
x(v) = 〈〈1, 0〉〉 or x(v) = 〈〈1, 1〉〉 and if the branch degree ofv = 2, thenx(v) = 〈〈2, 0〉〉.

A MP-formula is an element of WFF.
Let us observe that every MP-formula is finite.
In the sequelA, A1, B, B1, C denote MP-formulae.
Let us considerA and leta be an element of domA. ThenA�a is a MP-formula.
Let a be an element ofC . The functor Arity(a) yielding a natural number is defined by:

(Def. 7) Arity(a) = a1.

Let D be a non empty set, letT, T1 be trees decorated with elements ofD, and letp be a finite
sequence of elements ofN. Let us assume thatp ∈ domT. The functorT(p← T1) yields a tree
decorated with elements ofD and is defined as follows:

(Def. 8) T(p← T1) = T with-replacement(p,T1).

One can prove the following propositions:

(32) ((The elementary tree of 1)7−→ 〈〈1, 0〉〉)with-replacement(〈0〉,A) is a MP-formula.

(33) ((The elementary tree of 1)7−→ 〈〈1, 1〉〉)with-replacement(〈0〉,A) is a MP-formula.

(34) ((The elementary tree of 2)7−→ 〈〈2, 0〉〉)with-replacement(〈0〉,A)with-replacement(〈1〉,B)
is a MP-formula.

Let us considerA. The functor¬A yielding a MP-formula is defined by:

(Def. 9) ¬A = ((the elementary tree of 1)7−→ 〈〈1, 0〉〉)with-replacement(〈0〉,A).

The functor�A yielding a MP-formula is defined by:

(Def. 10) �A = ((the elementary tree of 1)7−→ 〈〈1, 1〉〉)with-replacement(〈0〉,A).

Let us considerB. The functorA∧B yields a MP-formula and is defined by:

(Def. 11) A∧B=((the elementary tree of 2)7−→ 〈〈2, 0〉〉)with-replacement(〈0〉,A)with-replacement(〈1〉,B).
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Let us considerA. The functor♦A yields a MP-formula and is defined as follows:

(Def. 12) ♦A = ¬�¬A.

Let us considerB. The functorA∨B yielding a MP-formula is defined by:

(Def. 13) A∨B = ¬(¬A∧¬B).

The functorA⇒ B yielding a MP-formula is defined by:

(Def. 14) A⇒ B = ¬(A∧¬B).

The following two propositions are true:

(35) (The elementary tree of 0)7−→ 〈〈3, n〉〉 is a MP-formula.

(36) (The elementary tree of 0)7−→ 〈〈0, 0〉〉 is a MP-formula.

Let us considerp. The functor@p yields a MP-formula and is defined as follows:

(Def. 15) @p = (the elementary tree of 0)7−→ p.

One can prove the following propositions:

(37) If @p = @q, thenp = q.

(38) If ¬A = ¬B, thenA = B.

(39) If �A = �B, thenA = B.

(40) If A∧B = A1∧B1, thenA = A1 andB = B1.

The MP-formula VERUM is defined as follows:

(Def. 16) VERUM= (the elementary tree of 0)7−→ 〈〈0, 0〉〉.

The following propositions are true:

(42)5 If carddomA = 1, thenA = VERUM or there existsp such thatA = @p.

(43) If carddomA≥ 2, then there existsB such thatA = ¬B or A = �B or there existB, C such
thatA = B∧C.

(44) carddomA < carddom¬A.

(45) carddomA < carddom�A.

(46) carddomA < carddom(A∧B) and carddomB < carddom(A∧B).

Let I1 be a MP-formula. We say thatI1 is atomic if and only if:

(Def. 17) There existsp such thatI1 = @p.

We say thatI1 is negative if and only if:

(Def. 18) There existsA such thatI1 = ¬A.

We say thatI1 is necessitive if and only if:

(Def. 19) There existsA such thatI1 = �A.

We say thatI1 is conjunctive if and only if:

(Def. 20) There existA, B such thatI1 = A∧B.

5 The proposition (41) has been removed.
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One can check the following observations:

∗ there exists a MP-formula which is atomic,

∗ there exists a MP-formula which is negative,

∗ there exists a MP-formula which is necessitive, and

∗ there exists a MP-formula which is conjunctive.

The schemeMP Indconcerns a unary predicateP , and states that:
For every elementA of WFF holdsP [A]

provided the following conditions are satisfied:
• P [VERUM],
• For every variablep holdsP [@p],
• For every elementA of WFF such thatP [A] holdsP [¬A],
• For every elementA of WFF such thatP [A] holdsP [�A], and
• For all elementsA, B of WFF such thatP [A] andP [B] holdsP [A∧B].

Next we state several propositions:

(47) LetA be an element of WFF. Then

(i) A = VERUM, or

(ii) A is an atomic MP-formula, a negative MP-formula, a necessitive MP-formula, and a
conjunctive MP-formula.

(48) A= VERUM or there existsp such thatA= @p or there existsB such thatA= ¬B or there
existsB such thatA = �B or there existB, C such thatA = B∧C.

(49) @p 6= ¬A and@p 6= �A and@p 6= A∧B.

(50) ¬A 6= �B and¬A 6= B∧C.

(51) �A 6= B∧C.

(52) VERUM 6= @p and VERUM6= ¬A and VERUM6= �A and VERUM6= A∧B.

The schemeMP Func Exdeals with a non empty setA , an elementB of A , a unary functorF
yielding an element ofA , two unary functorsG andH yielding elements ofA , and a binary functor
I yielding an element ofA , and states that:

There exists a functionf from WFF intoA such that
(i) f (VERUM) = B,

(ii) for every variablep holds f (@p) = F (p),
(iii) for every elementA of WFF holdsf (¬A) = G( f (A)),
(iv) for every elementA of WFF holdsf (�A) = H ( f (A)), and
(v) for all elementsA, B of WFF holdsf (A∧B) = I ( f (A), f (B))

for all values of the parameters.
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