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Summary. Let K = 〈S;K,0,1,+, ·〉 be a ring. The structureopK = 〈S;K,0,1,+,•〉 is
called anti-ring, ifα•β = β ·α for elementsα, β of K [8, pages 5–7]. It is easily seen thatopK
is also a ring. IfV is a left module overK, thenV is a right module overopK. If W is a right
module overK, thenW is a left module overopK. Let K,L be rings. A morphismJ : K −→ L
is called anti-homomorphism, ifJ(α ·β) = J(β) ·J(α) for elementsα, β of K. If J : K −→ L
is a homomorphism, thenJ : K −→ opL is an anti-homomorphism. LetK,L be rings,V,W left
modules overK,L respectively andJ : K −→ L an anti-monomorphism. A mapf : V −→W
is calledJ - semilinear, if f (x+y) = f (x)+ f (y) and f (α ·x) = J(α) · f (x) for vectorsx,y of
V and a scalarα of K.

MML Identifier: MOD_4.

WWW: http://mizar.org/JFM/Vol4/mod_4.html

The articles [4], [12], [13], [2], [3], [1], [11], [6], [7], [9], [5], and [10] provide the notation and
terminology for this paper.

1. OPPOSITE FUNCTIONS

In this paperA, B, C are non empty sets andf is a function from[:A, B:] into C.
Let us considerA, B, C, f . Thenx f is a function from[:B, A:] into C.
One can prove the following proposition

(1) For every elementx of A and for every elementy of B holds f (x, y) = (x f )(y, x).

2. OPPOSITE RINGS

In the sequelK is a non empty double loop structure.
Let us considerK. The functoropK yields a strict double loop structure and is defined as follows:

(Def. 1) opK = 〈the carrier ofK, the addition ofK, x(the multiplication ofK),the unity ofK, the
zero ofK〉.

Let us considerK. One can check thatopK is non empty.
Let K be an add-associative right complementable right zeroed non empty double loop structure.

Observe thatopK is add-associative, right zeroed, and right complementable.
One can prove the following propositions:

(2)(i) The loop structure ofopK = the loop structure ofK,

(ii) if K is add-associative, right zeroed, and right complementable, then compopK = compK,
and

(iii) for every setx holdsx is a scalar ofopK iff x is a scalar ofK.
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(3) op(opK) = the double loop structure ofK.

(4) Let K be an add-associative right zeroed right complementable non empty double loop
structure. Then

(i) 0K = 0opK ,

(ii) 1K = 1opK , and

(iii) for all scalarsx, y, z, u of K and for all scalarsa, b, c, d of opK such thatx = a andy = b
andz= c andu= d holdsx+y= a+b andx·y= b·a and−x=−a andx+y+z= a+b+c
andx+(y+z) = a+(b+c) and(x·y) ·z= c· (b·a) andx· (y·z) = (c·b) ·a andx· (y+z) =
(b+c) ·a and(y+z) ·x = a· (b+c) andx ·y+z·u = b·a+d ·c.

(5) For every ringK holdsopK is a strict ring.

Let K be a ring. One can check thatopK is Abelian, add-associative, right zeroed, right comple-
mentable, well unital, and distributive.

One can prove the following proposition

(6) For every ringK holdsopK is a ring.

Let K be a ring. One can verify thatopK is associative.
We now state the proposition

(7) For every skew fieldK holdsopK is a skew field.

Let K be a skew field. One can check thatopK is non degenerated, field-like, associative,
Abelian, add-associative, right zeroed, right complementable, well unital, and distributive.

One can prove the following proposition

(8) For every fieldK holdsopK is a strict field.

Let K be a field. Observe thatopK is strict and field-like.

3. OPPOSITE MODULES

In the sequelV is a non empty vector space structure overK.
Let us considerK, V. The functoropV yields a strict right module structure overopK and is

defined by the condition (Def. 2).

(Def. 2) Leto be a function from[: the carrier ofV, the carrier ofopK :] into the carrier ofV. Suppose
o = x(the left multiplication ofV). ThenopV = 〈the carrier ofV, the addition ofV, the zero
of V, o〉.

Let us considerK, V. Observe thatopV is non empty.
We now state the proposition

(9)(i) The loop structure ofopV = the loop structure ofV, and

(ii) for every setx holdsx is a vector ofV iff x is a vector ofopV.

Let us considerK, V and leto be a function from[: the carrier ofK, the carrier ofV :] into the
carrier ofV. The functoropo yielding a function from[: the carrier ofopV, the carrier ofopK :] into
the carrier ofopV is defined by:

(Def. 3) opo = xo.

One can prove the following proposition

(10) The right multiplication ofopV = op(the left multiplication ofV).
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In the sequelW is a non empty right module structure overK.
Let us considerK, W. The functoropW yields a strict vector space structure overopK and is

defined by the condition (Def. 4).

(Def. 4) Leto be a function from[: the carrier ofopK, the carrier ofW :] into the carrier ofW. Sup-
poseo = x(the right multiplication ofW). ThenopW = 〈the carrier ofW, the addition ofW,
the zero ofW, o〉.

Let us considerK, W. One can check thatopW is non empty.
The following proposition is true

(12)1(i) The loop structure ofopW = the loop structure ofW, and

(ii) for every setx holdsx is a vector ofW iff x is a vector ofopW.

Let us considerK, W and leto be a function from[: the carrier ofW, the carrier ofK :] into the
carrier ofW. The functoropo yields a function from[: the carrier ofopK, the carrier ofopW :] into the
carrier ofopW and is defined as follows:

(Def. 5) opo = xo.

We now state a number of propositions:

(13) The left multiplication ofopW = op(the right multiplication ofW).

(15)2 For every functiono from [: the carrier ofK, the carrier ofV :] into the carrier ofV holds
op(opo) = o.

(16) Leto be a function from[: the carrier ofK, the carrier ofV :] into the carrier ofV, x be a
scalar ofK, y be a scalar ofopK, v be a vector ofV, andw be a vector ofopV. If x = y and
v = w, then(opo)(w, y) = o(x, v).

(17) LetK, L be rings,V be a non empty vector space structure overK, W be a non empty right
module structure overL, x be a scalar ofK, y be a scalar ofL, v be a vector ofV, andw be a
vector ofW. If L = opK andW = opV andx = y andv = w, thenw ·y = x ·v.

(18) LetK, L be rings,V be a non empty vector space structure overK, W be a non empty right
module structure overL, v1, v2 be vectors ofV, andw1, w2 be vectors ofW. If L = opK and
W = opV andv1 = w1 andv2 = w2, thenw1 +w2 = v1 +v2.

(19) For every functiono from [: the carrier ofW, the carrier ofK :] into the carrier ofW holds
op(opo) = o.

(20) Leto be a function from[: the carrier ofW, the carrier ofK :] into the carrier ofW, x be a
scalar ofK, y be a scalar ofopK, v be a vector ofW, andw be a vector ofopW. If x = y and
v = w, then(opo)(y, w) = o(v, x).

(21) LetK, L be rings,V be a non empty vector space structure overK, W be a non empty right
module structure overL, x be a scalar ofK, y be a scalar ofL, v be a vector ofV, andw be a
vector ofW. If K = opL andV = opW andx = y andv = w, thenw ·y = x ·v.

(22) LetK, L be rings,V be a non empty vector space structure overK, W be a non empty right
module structure overL, v1, v2 be vectors ofV, andw1, w2 be vectors ofW. If K = opL and
V = opW andv1 = w1 andv2 = w2, thenw1 +w2 = v1 +v2.

(23) Let K be a strict non empty double loop structure andV be a non empty vector space
structure overK. Thenop(opV) = the vector space structure ofV.

(24) Let K be a strict non empty double loop structure andW be a non empty right module
structure overK. Thenop(opW) = the right module structure ofW.

1 The proposition (11) has been removed.
2 The proposition (14) has been removed.
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(25) For every ringK and for every left moduleV overK holdsopV is a strict right module over
opK.

Let K be a ring and letV be a left module overK. Observe thatopV is Abelian, add-associative,
right zeroed, right complementable, and right module-like.

The following proposition is true

(26) For every ringK and for every right moduleW over K holdsopW is a strict left module
overopK.

LetK be a ring and letW be a right module overK. Observe thatopW is Abelian, add-associative,
right zeroed, right complementable, and vector space-like.

4. MORPHISMS OF RINGS

Let K, L be non empty double loop structures and letI1 be a map fromK into L. We say thatI1 is
antilinear if and only if:

(Def. 6) For all scalarsx, y of K holdsI1(x+ y) = I1(x)+ I1(y) and for all scalarsx, y of K holds
I1(x ·y) = I1(y) · I1(x) andI1(1K) = 1L.

Let K, L be non empty double loop structures and letI1 be a map fromK into L. We say thatI1
is monomorphism if and only if:

(Def. 7) I1 is linear and one-to-one.

We say thatI1 is antimonomorphism if and only if:

(Def. 8) I1 is antilinear and one-to-one.

Let K, L be non empty double loop structures and letI1 be a map fromK into L. We say thatI1
is epimorphism if and only if:

(Def. 9) I1 is linear and rngI1 = the carrier ofL.

We say thatI1 is antiepimorphism if and only if:

(Def. 10) I1 is antilinear and rngI1 = the carrier ofL.

Let K, L be non empty double loop structures and letI1 be a map fromK into L. We say thatI1
is isomorphism if and only if:

(Def. 11) I1 is monomorphism and rngI1 = the carrier ofL.

We say thatI1 is antiisomorphism if and only if:

(Def. 12) I1 is antimonomorphism and rngI1 = the carrier ofL.

In the sequelJ is a map fromK into K.
Let K be a non empty double loop structure and letI1 be a map fromK into K. We say thatI1 is

endomorphism if and only if:

(Def. 13) I1 is linear.

We say thatI1 is antiendomorphism if and only if:

(Def. 14) I1 is antilinear.

We say thatI1 is automorphism if and only if:

(Def. 15) I1 is isomorphism.

We say thatI1 is antiautomorphism if and only if:
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(Def. 16) I1 is antiisomorphism.

Next we state three propositions:

(27) J is automorphism if and only if the following conditions are satisfied:

(i) for all scalarsx, y of K holdsJ(x+y) = J(x)+J(y),

(ii) for all scalarsx, y of K holdsJ(x ·y) = J(x) ·J(y),

(iii) J(1K) = 1K ,

(iv) J is one-to-one, and

(v) rngJ = the carrier ofK.

(28) J is antiautomorphism if and only if the following conditions are satisfied:

(i) for all scalarsx, y of K holdsJ(x+y) = J(x)+J(y),

(ii) for all scalarsx, y of K holdsJ(x ·y) = J(y) ·J(x),

(iii) J(1K) = 1K ,

(iv) J is one-to-one, and

(v) rngJ = the carrier ofK.

(29) idK is automorphism.

We adopt the following rules:K, L denote rings,J denotes a map fromK into L, andx, y denote
scalars ofK.

Next we state four propositions:

(30) If J is linear, thenJ(0K) = 0L andJ(−x) =−J(x) andJ(x−y) = J(x)−J(y).

(31) If J is antilinear, thenJ(0K) = 0L andJ(−x) =−J(x) andJ(x−y) = J(x)−J(y).

(32) For every ringK holds idK is antiautomorphism iffK is a commutative ring.

(33) For every skew fieldK holds idK is antiautomorphism iffK is a field.

5. OPPOSITE MORPHISMS TO MORPHISMS OF RINGS

Let K, L be non empty double loop structures and letJ be a map fromK into L. The functoropJ
yields a map fromK into opL and is defined as follows:

(Def. 17) opJ = J.

In the sequelK, L are add-associative right zeroed right complementable non empty double loop
structures andJ is a map fromK into L.

One can prove the following propositions:

(34) op(opJ) = J.

(35) Let K, L be add-associative right zeroed right complementable non empty double loop
structures andJ be a map fromK into L. ThenJ is linear if and only ifopJ is antilinear.

(36) J is antilinear iffopJ is linear.

(37) J is monomorphism iffopJ is antimonomorphism.

(38) J is antimonomorphism iffopJ is monomorphism.

(39) J is epimorphism iffopJ is antiepimorphism.

(40) J is antiepimorphism iffopJ is epimorphism.

(41) J is isomorphism iffopJ is antiisomorphism.
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(42) J is antiisomorphism iffopJ is isomorphism.

In the sequelJ denotes a map fromK into K.
Next we state four propositions:

(43) J is endomorphism iffopJ is antilinear.

(44) J is antiendomorphism iffopJ is linear.

(45) J is automorphism iffopJ is antiisomorphism.

(46) J is antiautomorphism iffopJ is isomorphism.

6. MORPHISMS OF GROUPS

In the sequelG, H are groups.
Let us considerG, H. A map fromG into H is said to be a homomorphism fromG to H if:

(Def. 18) For all elementsx, y of G holds it(x+y) = it(x)+ it(y).

Let us considerG, H. Then ZeroMap(G,H) is a homomorphism fromG to H.
In the sequelf denotes a homomorphism fromG to H.
Let us considerG, H and letI1 be a homomorphism fromG to H. We say thatI1 is monomor-

phism if and only if:

(Def. 19) I1 is one-to-one.

Let us considerG, H and letI1 be a homomorphism fromG to H. We say thatI1 is epimorphism
if and only if:

(Def. 20) rngI1 = the carrier ofH.

Let us considerG, H and letI1 be a homomorphism fromG to H. We say thatI1 is isomorphism
if and only if:

(Def. 21) I1 is one-to-one and rngI1 = the carrier ofH.

Let us considerG. An endomorphism ofG is a homomorphism fromG to G.
Let us considerG. Observe that there exists an endomorphism ofG which is isomorphism.
Let us considerG. An automorphism ofG is an isomorphism endomorphism ofG.
Let us considerG. Then idG is an automorphism ofG.
In the sequelx, y denote elements ofG.
The following proposition is true

(48)3 f (0G) = 0H and f (−x) =− f (x) and f (x−y) = f (x)− f (y).

We adopt the following convention:G, H denote Abelian groups,f denotes a homomorphism
from G to H, andx, y denote elements ofG.

The following proposition is true

(49) f (x−y) = f (x)− f (y).

3 The proposition (47) has been removed.
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7. SEMILINEAR MORPHISMS

For simplicity, we adopt the following convention:K, L are rings,J is a map fromK into L, V is a
left module overK, andW is a left module overL.

Let us considerK, L, J, V, W. A map fromV into W is said to be a homomorphism fromV to
W by J if it satisfies the conditions (Def. 23).

(Def. 23)4(i) For all vectorsx, y of V holds it(x+y) = it(x)+ it(y), and

(ii) for every scalara of K and for every vectorx of V holds it(a·x) = J(a) · it(x).

Next we state the proposition

(50) ZeroMap(V,W) is a homomorphism fromV to W by J.

In the sequelf is a homomorphism fromV to W by J.
Let us considerK, L, J, V, W, f . We say thatf is a monomorphism wrpJ if and only if:

(Def. 24) f is one-to-one.

We say thatf is an epimorphism wrpJ if and only if:

(Def. 25) rngf = the carrier ofW.

We say thatf is an isomorphism wrpJ if and only if:

(Def. 26) f is one-to-one and rngf = the carrier ofW.

In the sequelJ is a map fromK into K and f is a homomorphism fromV to V by J.
Let us considerK, J, V. An endomorphism ofJ andV is a homomorphism fromV to V by J.
Let us considerK, J, V, f . We say thatf is an automorphism wrpJ if and only if:

(Def. 27) f is one-to-one and rngf = the carrier ofV.

In the sequelW is a left module overK.
Let us considerK, V, W. A homomorphism fromV to W is a homomorphism fromV to W by

idK .
One can prove the following proposition

(51) Let f be a map fromV into W. Then f is a homomorphism fromV to W if and only if the
following conditions are satisfied:

(i) for all vectorsx, y of V holds f (x+y) = f (x)+ f (y), and

(ii) for every scalara of K and for every vectorx of V holds f (a·x) = a· f (x).

Let us considerK,V,W and letI1 be a homomorphism fromV toW. We say thatI1 is monomor-
phism if and only if:

(Def. 28) I1 is one-to-one.

We say thatI1 is epimorphism if and only if:

(Def. 29) rngI1 = the carrier ofW.

We say thatI1 is isomorphism if and only if:

(Def. 30) I1 is one-to-one and rngI1 = the carrier ofW.

Let us considerK, V. An endomorphism ofV is a homomorphism fromV to V.
Let us considerK, V and letI1 be an endomorphism ofV. We say thatI1 is automorphism if and

only if:

(Def. 31) I1 is one-to-one and rngI1 = the carrier ofV.

4 The definition (Def. 22) has been removed.



OPPOSITE RINGS, MODULES AND THEIR MORPHISMS 8

REFERENCES
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