Opposite Rings, Modules and Their Morphisms

Michał Muzalewski Warsaw University Białystok

Summary. Let $\mathbb{K} = \langle S; K, 0, 1, +, \cdot \rangle$ be a ring. The structure ${}^{\mathrm{op}}\mathbb{K} = \langle S; K, 0, 1, +, \bullet \rangle$ is called anti-ring, if $\alpha \bullet \beta = \beta \cdot \alpha$ for elements α , β of K [8, pages 5–7]. It is easily seen that ${}^{\mathrm{op}}\mathbb{K}$ is also a ring. If V is a left module over \mathbb{K} , then V is a right module over ${}^{\mathrm{op}}\mathbb{K}$. If W is a right module over \mathbb{K} , then W is a left module over ${}^{\mathrm{op}}\mathbb{K}$. Let K, L be rings. A morphism $J: K \longrightarrow L$ is called anti-homomorphism, if $J(\alpha \cdot \beta) = J(\beta) \cdot J(\alpha)$ for elements α , β of K. If $J: K \longrightarrow L$ is a homomorphism, then $J: K \longrightarrow {}^{\mathrm{op}}L$ is an anti-homomorphism. Let K, L be rings, V, W left modules over K, L respectively and $J: K \longrightarrow L$ an anti-monomorphism. A map $f: V \longrightarrow W$ is called J - semilinear, if f(x+y) = f(x) + f(y) and $f(\alpha \cdot x) = J(\alpha) \cdot f(x)$ for vectors x, y of V and a scalar α of K.

MML Identifier: MOD_4.

WWW: http://mizar.org/JFM/Vol4/mod_4.html

The articles [4], [12], [13], [2], [3], [1], [11], [6], [7], [9], [5], and [10] provide the notation and terminology for this paper.

1. Opposite functions

In this paper A, B, C are non empty sets and f is a function from [:A, B:] into C. Let us consider A, B, C, f. Then f is a function from [:B, A:] into C. One can prove the following proposition

(1) For every element x of A and for every element y of B holds f(x, y) = (f(y, x)).

2. Opposite rings

In the sequel *K* is a non empty double loop structure.

Let us consider K. The functor op K yields a strict double loop structure and is defined as follows:

(Def. 1) ${}^{op}K = \langle \text{the carrier of } K, \text{ the addition of } K, \langle \cap (\text{the multiplication of } K), \text{the unity of } K, \text{ the zero of } K \rangle$.

Let us consider K. One can check that ${}^{\mathrm{op}}K$ is non empty.

Let K be an add-associative right complementable right zeroed non empty double loop structure. Observe that ${}^{op}K$ is add-associative, right zeroed, and right complementable.

One can prove the following propositions:

- (2)(i) The loop structure of ${}^{op}K$ = the loop structure of K,
- (ii) if K is add-associative, right zeroed, and right complementable, then comp^{op}K = comp K, and
- (iii) for every set x holds x is a scalar of ${}^{op}K$ iff x is a scalar of K.

- (3) $^{\text{op}}(^{\text{op}}K)$ = the double loop structure of K.
- (4) Let *K* be an add-associative right zeroed right complementable non empty double loop structure. Then
- (i) $0_K = 0_{\text{op}K}$,
- (ii) $\mathbf{1}_K = \mathbf{1}_{op_K}$, and
- (iii) for all scalars x, y, z, u of K and for all scalars a, b, c, d of ${}^{op}K$ such that x = a and y = b and z = c and u = d holds x + y = a + b and $x \cdot y = b \cdot a$ and -x = -a and x + y + z = a + b + c and x + (y + z) = a + (b + c) and $(x \cdot y) \cdot z = c \cdot (b \cdot a)$ and $(y \cdot z) = (c \cdot b) \cdot a$ and $(y \cdot z) \cdot a = a \cdot (b + c)$ and $(y \cdot z) \cdot a = a \cdot (b \cdot c)$ and $(y \cdot z) \cdot a \cdot a \cdot (b \cdot c)$ and $(y \cdot z) \cdot a \cdot$
- (5) For every ring K holds ${}^{op}K$ is a strict ring.

Let K be a ring. One can check that ${}^{op}K$ is Abelian, add-associative, right zeroed, right complementable, well unital, and distributive.

One can prove the following proposition

(6) For every ring K holds ${}^{op}K$ is a ring.

Let K be a ring. One can verify that ${}^{op}K$ is associative. We now state the proposition

(7) For every skew field K holds ${}^{op}K$ is a skew field.

Let K be a skew field. One can check that ${}^{op}K$ is non degenerated, field-like, associative, Abelian, add-associative, right zeroed, right complementable, well unital, and distributive.

One can prove the following proposition

(8) For every field K holds ${}^{op}K$ is a strict field.

Let K be a field. Observe that ${}^{op}K$ is strict and field-like.

3. Opposite modules

In the sequel V is a non empty vector space structure over K.

Let us consider K, V. The functor ${}^{op}V$ yields a strict right module structure over ${}^{op}K$ and is defined by the condition (Def. 2).

(Def. 2) Let o be a function from [: the carrier of V, the carrier of o into the carrier of V. Suppose $o = \sim$ (the left multiplication of V). Then o v is v the carrier of v, the addition of v, the zero of v, v is v in v in

Let us consider K, V. Observe that ^{op}V is non empty. We now state the proposition

- (9)(i) The loop structure of ${}^{op}V$ = the loop structure of V, and
- (ii) for every set x holds x is a vector of V iff x is a vector of ^{op}V .

Let us consider K, V and let o be a function from [: the carrier of K, the carrier of V:] into the carrier of V. The functor ${}^{op}o$ yielding a function from [: the carrier of ${}^{op}V$, the carrier of ${}^{op}K$:] into the carrier of ${}^{op}V$ is defined by:

(Def. 3)
$$^{\text{op}}o = \curvearrowleft o$$
.

One can prove the following proposition

(10) The right multiplication of ${}^{op}V = {}^{op}$ (the left multiplication of V).

In the sequel *W* is a non empty right module structure over *K*.

Let us consider K, W. The functor ${}^{op}W$ yields a strict vector space structure over ${}^{op}K$ and is defined by the condition (Def. 4).

(Def. 4) Let o be a function from [: the carrier of ${}^{op}K$, the carrier of W:] into the carrier of W. Suppose $o = \curvearrowleft$ (the right multiplication of W). Then ${}^{op}W = \langle$ the carrier of W, the addition of W, the zero of W, $o \rangle$.

Let us consider K, W. One can check that ${}^{op}W$ is non empty. The following proposition is true

- $(12)^{1}(i)$ The loop structure of $^{op}W =$ the loop structure of W, and
- (ii) for every set x holds x is a vector of W iff x is a vector of ${}^{op}W$.

Let us consider K, W and let o be a function from [: the carrier of W, the carrier of K:] into the carrier of W. The functor ${}^{op}o$ yields a function from [: the carrier of ${}^{op}K$, the carrier of ${}^{op}W$:] into the carrier of ${}^{op}W$ and is defined as follows:

(Def. 5) $^{\text{op}}o = \curvearrowleft o$.

We now state a number of propositions:

- (13) The left multiplication of ${}^{op}W = {}^{op}$ (the right multiplication of W).
- (15)² For every function o from [: the carrier of K, the carrier of V:] into the carrier of V holds $^{op}(^{op}o) = o$.
- (16) Let o be a function from [: the carrier of K, the carrier of V:] into the carrier of V, x be a scalar of K, Y be a scalar of K, Y be a vector of X, and Y be a vector of X.
- (17) Let K, L be rings, V be a non empty vector space structure over K, W be a non empty right module structure over L, x be a scalar of K, y be a scalar of L, v be a vector of V, and w be a vector of W. If $L = {}^{\mathrm{op}}K$ and $W = {}^{\mathrm{op}}V$ and x = y and v = w, then $w \cdot y = x \cdot v$.
- (18) Let K, L be rings, V be a non empty vector space structure over K, W be a non empty right module structure over L, v_1 , v_2 be vectors of V, and w_1 , w_2 be vectors of W. If $L = {}^{\mathrm{op}}K$ and $W = {}^{\mathrm{op}}V$ and $v_1 = w_1$ and $v_2 = w_2$, then $w_1 + w_2 = v_1 + v_2$.
- (19) For every function o from [: the carrier of W, the carrier of K:] into the carrier of W holds $^{\mathrm{op}}(^{\mathrm{op}}o) = o$.
- (20) Let o be a function from [: the carrier of W, the carrier of K:] into the carrier of W, x be a scalar of K, Y be a scalar of K, Y be a vector of K, Y and Y be a vector of K, Y and Y be a vector of X and Y be a vector of X and Y be a vector of X and Y and Y be a vector of X.
- (21) Let K, L be rings, V be a non empty vector space structure over K, W be a non empty right module structure over L, x be a scalar of K, y be a scalar of L, v be a vector of V, and w be a vector of W. If $K = {}^{\mathrm{op}}L$ and $V = {}^{\mathrm{op}}W$ and x = y and v = w, then $w \cdot y = x \cdot v$.
- (22) Let K, L be rings, V be a non empty vector space structure over K, W be a non empty right module structure over L, v_1 , v_2 be vectors of V, and w_1 , w_2 be vectors of W. If $K = {}^{\mathrm{op}}L$ and $V = {}^{\mathrm{op}}W$ and $V = w_1$ and $V = w_2$, then $W_1 + W_2 = V_1 + V_2$.
- (23) Let K be a strict non empty double loop structure and V be a non empty vector space structure over K. Then $^{op}(^{op}V)$ = the vector space structure of V.
- (24) Let K be a strict non empty double loop structure and W be a non empty right module structure over K. Then $^{op}(^{op}W)$ = the right module structure of W.

¹ The proposition (11) has been removed.

² The proposition (14) has been removed.

(25) For every ring K and for every left module V over K holds ${}^{\mathrm{op}}V$ is a strict right module over ${}^{\mathrm{op}}K$

Let K be a ring and let V be a left module over K. Observe that ${}^{op}V$ is Abelian, add-associative, right zeroed, right complementable, and right module-like.

The following proposition is true

(26) For every ring K and for every right module W over K holds ^{op}W is a strict left module over ^{op}K .

Let K be a ring and let W be a right module over K. Observe that ${}^{op}W$ is Abelian, add-associative, right zeroed, right complementable, and vector space-like.

4. MORPHISMS OF RINGS

Let K, L be non empty double loop structures and let I_1 be a map from K into L. We say that I_1 is antilinear if and only if:

(Def. 6) For all scalars x, y of K holds $I_1(x+y) = I_1(x) + I_1(y)$ and for all scalars x, y of K holds $I_1(x \cdot y) = I_1(y) \cdot I_1(x)$ and $I_1(\mathbf{1}_K) = \mathbf{1}_L$.

Let K, L be non empty double loop structures and let I_1 be a map from K into L. We say that I_1 is monomorphism if and only if:

(Def. 7) I_1 is linear and one-to-one.

We say that I_1 is antimonomorphism if and only if:

(Def. 8) I_1 is antilinear and one-to-one.

Let K, L be non empty double loop structures and let I_1 be a map from K into L. We say that I_1 is epimorphism if and only if:

(Def. 9) I_1 is linear and rng I_1 = the carrier of L.

We say that I_1 is antiepimorphism if and only if:

(Def. 10) I_1 is antilinear and $rng I_1$ = the carrier of L.

Let K, L be non empty double loop structures and let I_1 be a map from K into L. We say that I_1 is isomorphism if and only if:

(Def. 11) I_1 is monomorphism and rng I_1 = the carrier of L.

We say that I_1 is antiisomorphism if and only if:

(Def. 12) I_1 is antimonomorphism and rng I_1 = the carrier of L.

In the sequel J is a map from K into K.

Let K be a non empty double loop structure and let I_1 be a map from K into K. We say that I_1 is endomorphism if and only if:

(Def. 13) I_1 is linear.

We say that I_1 is antiendomorphism if and only if:

(Def. 14) I_1 is antilinear.

We say that I_1 is automorphism if and only if:

(Def. 15) I_1 is isomorphism.

We say that I_1 is antiautomorphism if and only if:

(Def. 16) I_1 is antiisomorphism.

Next we state three propositions:

- (27) J is automorphism if and only if the following conditions are satisfied:
 - (i) for all scalars x, y of K holds J(x+y) = J(x) + J(y),
- (ii) for all scalars x, y of K holds $J(x \cdot y) = J(x) \cdot J(y)$,
- (iii) $J(\mathbf{1}_K) = \mathbf{1}_K$,
- (iv) J is one-to-one, and
- (v) $\operatorname{rng} J = \operatorname{the carrier of} K$.
- (28) *J* is antiautomorphism if and only if the following conditions are satisfied:
 - (i) for all scalars x, y of K holds J(x+y) = J(x) + J(y),
 - (ii) for all scalars x, y of K holds $J(x \cdot y) = J(y) \cdot J(x)$,
- (iii) $J(\mathbf{1}_K) = \mathbf{1}_K$,
- (iv) J is one-to-one, and
- (v) $\operatorname{rng} J = \operatorname{the carrier of} K$.
- (29) id_K is automorphism.

We adopt the following rules: K, L denote rings, J denotes a map from K into L, and x, y denote scalars of K.

Next we state four propositions:

- (30) If *J* is linear, then $J(0_K) = 0_L$ and J(-x) = -J(x) and J(x-y) = J(x) J(y).
- (31) If *J* is antilinear, then $J(0_K) = 0_L$ and J(-x) = -J(x) and J(x-y) = J(x) J(y).
- (32) For every ring K holds id_K is antiautomorphism iff K is a commutative ring.
- (33) For every skew field K holds id_K is antiautomorphism iff K is a field.

5. Opposite morphisms to morphisms of rings

Let K, L be non empty double loop structures and let J be a map from K into L. The functor ${}^{\mathrm{op}}J$ yields a map from K into ${}^{\mathrm{op}}L$ and is defined as follows:

(Def. 17)
$$^{op}J = J$$
.

In the sequel K, L are add-associative right zeroed right complementable non empty double loop structures and J is a map from K into L.

One can prove the following propositions:

- (34) $\operatorname{op}(\operatorname{op} J) = J$.
- (35) Let K, L be add-associative right zeroed right complementable non empty double loop structures and J be a map from K into L. Then J is linear if and only if ${}^{op}J$ is antilinear.
- (36) J is antilinear iff ${}^{op}J$ is linear.
- (37) J is monomorphism iff ${}^{op}J$ is antimonomorphism.
- (38) J is antimonomorphism iff ${}^{op}J$ is monomorphism.
- (39) J is epimorphism iff ${}^{op}J$ is antiepimorphism.
- (40) J is antiepimorphism iff ${}^{op}J$ is epimorphism.
- (41) J is isomorphism iff ${}^{op}J$ is antiisomorphism.

(42) J is antiisomorphism iff ${}^{op}J$ is isomorphism.

In the sequel *J* denotes a map from *K* into *K*. Next we state four propositions:

- (43) J is endomorphism iff ${}^{op}J$ is antilinear.
- (44) J is antiendomorphism iff ${}^{op}J$ is linear.
- (45) J is automorphism iff ${}^{op}J$ is antiisomorphism.
- (46) J is antiautomorphism iff ${}^{op}J$ is isomorphism.

6. Morphisms of groups

In the sequel G, H are groups.

Let us consider G, H. A map from G into H is said to be a homomorphism from G to H if:

(Def. 18) For all elements x, y of G holds it(x + y) = it(x) + it(y).

Let us consider G, H. Then ZeroMap(G, H) is a homomorphism from G to H.

In the sequel f denotes a homomorphism from G to H.

Let us consider G, H and let I_1 be a homomorphism from G to H. We say that I_1 is monomorphism if and only if:

(Def. 19) I_1 is one-to-one.

Let us consider G, H and let I_1 be a homomorphism from G to H. We say that I_1 is epimorphism if and only if:

(Def. 20) $\operatorname{rng} I_1 = \operatorname{the carrier of } H$.

Let us consider G, H and let I_1 be a homomorphism from G to H. We say that I_1 is isomorphism if and only if:

(Def. 21) I_1 is one-to-one and rng I_1 = the carrier of H.

Let us consider G. An endomorphism of G is a homomorphism from G to G.

Let us consider G. Observe that there exists an endomorphism of G which is isomorphism.

Let us consider G. An automorphism of G is an isomorphism endomorphism of G.

Let us consider G. Then id_G is an automorphism of G.

In the sequel x, y denote elements of G.

The following proposition is true

$$(48)^3$$
 $f(0_G) = 0_H$ and $f(-x) = -f(x)$ and $f(x-y) = f(x) - f(y)$.

We adopt the following convention: G, H denote Abelian groups, f denotes a homomorphism from G to H, and x, y denote elements of G.

The following proposition is true

(49)
$$f(x-y) = f(x) - f(y)$$
.

³ The proposition (47) has been removed.

7. SEMILINEAR MORPHISMS

For simplicity, we adopt the following convention: K, L are rings, J is a map from K into L, V is a left module over K, and W is a left module over L.

Let us consider K, L, J, V, W. A map from V into W is said to be a homomorphism from V to W by J if it satisfies the conditions (Def. 23).

(Def. 23)⁴(i) For all vectors x, y of V holds it(x+y) = it(x) + it(y), and

(ii) for every scalar a of K and for every vector x of V holds it $(a \cdot x) = J(a) \cdot it(x)$.

Next we state the proposition

(50) ZeroMap(V, W) is a homomorphism from V to W by J.

In the sequel f is a homomorphism from V to W by J.

Let us consider K, L, J, V, W, f. We say that f is a monomorphism wrp J if and only if:

(Def. 24) f is one-to-one.

We say that f is an epimorphism wrp J if and only if:

(Def. 25) $\operatorname{rng} f = \operatorname{the carrier of} W$.

We say that f is an isomorphism wrp J if and only if:

(Def. 26) f is one-to-one and rng f = the carrier of W.

In the sequel J is a map from K into K and f is a homomorphism from V to V by J. Let us consider K, J, V. An endomorphism of J and V is a homomorphism from V to V by J.

Let us consider K, J, V, f. We say that f is an automorphism wrp J if and only if:

(Def. 27) f is one-to-one and rng f = the carrier of V.

In the sequel W is a left module over K.

Let us consider K, V, W. A homomorphism from V to W is a homomorphism from V to W by id_K .

One can prove the following proposition

- (51) Let f be a map from V into W. Then f is a homomorphism from V to W if and only if the following conditions are satisfied:
 - (i) for all vectors x, y of V holds f(x+y) = f(x) + f(y), and
- (ii) for every scalar a of K and for every vector x of V holds $f(a \cdot x) = a \cdot f(x)$.

Let us consider K, V, W and let I_1 be a homomorphism from V to W. We say that I_1 is monomorphism if and only if:

(Def. 28) I_1 is one-to-one.

We say that I_1 is epimorphism if and only if:

(Def. 29) $\operatorname{rng} I_1 = \operatorname{the carrier of } W$.

We say that I_1 is isomorphism if and only if:

(Def. 30) I_1 is one-to-one and rng I_1 = the carrier of W.

Let us consider K, V. An endomorphism of V is a homomorphism from V to V.

Let us consider K, V and let I_1 be an endomorphism of V. We say that I_1 is automorphism if and only if:

(Def. 31) I_1 is one-to-one and rng I_1 = the carrier of V.

⁴ The definition (Def. 22) has been removed.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [8] Michał Muzalewski. Foundations of Metric-Affine Geometry. Dział Wydawnictw Filii UW w Białymstoku, Filia UW w Białymstoku, 1990.
- [9] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html.
- $[10] \begin{tabular}{ll} Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \verb|http://mizar.org/JFM/Vol3/ringcatl.html|. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \verb|http://mizar.org/JFM/Vol3/ringcatl.html|. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \verb|http://mizar.org/JFM/Vol3/ringcatl.html|. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \verb|http://mizar.org/JFM/Vol3/ringcatl.html|. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \verb|http://mizar.org/JFM/Vol3/ringcatl.html|. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \hline| Michał Muzalewski. Category of rings. {\it Journal of Formalized Mathematics}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\ \hline| Michał Muzalewski. {\it Michał Muzalewski}, 3, 1991. \\$
- [11] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 22, 1992

Published January 2, 2004