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Summary. We define the trivial left module, morphism of left modules and the field
Z3. We prove some elementary facts.

MML Identifier: MOD_ 2.

WWW: http://mizar.org/JFM/Vol3/mod_2.html

The articles[[1R],[[11],16],[14],18],14],1],1213],16],[18],110],[7],19], and 2] provide the notation
and terminology for this paper.

For simplicity, we use the following conventior; y, z denote setsD, D’ denote non empty
sets,R denotes a ringG, H, S denote non empty vector space structures &emdU; denotes a
universal class.

Let us consideR. The functorkr@ yields a strict left module oveR and is defined as follows:
(Def. ZE] RO = ({0}, 0p,, 0Py, T((the carrier olR) x {0})).
Next we state the proposition

(1) For every vectok of RO holdsx = O.e.

Let Rbe a non empty double loop structure,&tH be non empty vector space structures over
R, and letf be a map fronG into H. We say thaff is linear if and only if the conditions (Def. 5)
are satisfied.

(Def. Sﬂi) For all vectorsx, y of G holds f (x+y) = f(x) + f(y), and
(i) for every scalaa of Rand for every vectox of G holds f(a-x) = a- f(x).

Next we state two propositions:
(4ﬂ For every mapf from G into H such thatf is linear holdsf is additive.

(GE] Let f be a map fronG into H andg be a map fronH into S If f is linear and is linear,
theng- f is linear.

In the sequeR denotes a ring an@, H denote left modules ovéR.
The following proposition is true

(8F| zeroMafG,H) is linear.

1 The definition (Def. 1) has been removed.

2 The definitions (Def. 3) and (Def. 4) have been removed.
3 The propositions (2) and (3) have been removed.

4 The proposition (5) has been removed.

5 The proposition (7) has been removed.
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In the seque;, Gy, G3 are left modules oveR.
Let us consideR. We consider left module morphism structures dres systems
(adom-map, a cod-mapfan ),
where the dom-map and the cod-map are left modules Bvand therun is a map from the
dom-map into the cod-map.
In the sequef is a left module morphism structure over
Let us consideR, f. The functor donf yielding a left module oveR is defined by:

(Def. 6) domf = the dom-map off.
The functor cod vyields a left module oveR and is defined by:
(Def. 7) codf =the cod-map off.
Let us consideR, f. The functor furf yields a map from dorfiinto codf and is defined by:
(Def. 8) funf =theFun of f.

We now state the proposition

(9) Forevery mago from G; into G such thatf = (G1, G, fo) holds domf = G; and codf =
G, and funf = fq.

Let us consideR, G, H. The functor ZERQG, H) yields a strict left module morphism structure
overRand is defined by:

(Def.9) ZERQG,H) = (G,H,ZeroMag(G,H)).

Let us consideR and letl; be a left module morphism structure o\Rr We say that; is left
module morphism-like if and only if:

(Def. 10) funly is linear.

Let us consideR. Note that there exists a left module morphism structure Bughich is strict
and left module morphisme-like.

Let us consideR. A left module morphism oR is a left module morphism-like left module
morphism structure oveRr.

Next we state the proposition

(10) For every left module morphis of R holds theFun of F is linear.

Let us consideR, G, H. Observe that ZER@5, H) is left module morphism-like.
Let us consideR, G, H. A left module morphism oR is said to be a morphism fro@ to H if:

(Def. 11) domit= G and codit=H.

Let us consideR, G, H. Note that there exists a morphism fr@rto H which is strict.
We now state three propositions:

(11) Letf be aleft module morphism structure owrlf domf = G and codf = H and funf
is linear, thenf is a morphism fronG to H.

(12) For every magf from G into H such thatf is linear holds(G,H, f) is a strict morphism
from GtoH.

(13) idgislinear.
Let us consideR, G. The functor § yields a strict morphism fron® to G and is defined by:
(Def. 12) Iz = (G,G,idg).

Let us consideR, G, H. Then ZERQG,H) is a strict morphism front to H.
The following propositions are true:
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(14) LetF be a morphism fron® to H. Then there exists a mapfrom G into H such that the
left module morphism structure 6f = (G,H, f) and f is linear.

(15) For every strict morphisr from G to H there exists a magp from G into H such that
F =(G,H,f).

(16) For every left module morphisk of R there exist5, H such that is a morphism fronG
toH.

(17) LetF be a strict left module morphism & Then there exist left modulgs, H over R
and there exists a mapfrom G into H such that~ is a strict morphism front to H and
F =(G,H, f) andf is linear.

(18) Letg, f be left module morphisms &. Suppose domg= codf. Then there exist;, Gy,
Ggz such thag is a morphism fronG; to Gz and f is a morphism fronG; to Go.

Letus consideRand letG, F be left module morphisms & Let us assume that dd&= codF.
The functorG - F yielding a strict left module morphism & is defined by the condition (Def. 13).

(Def. 13) LetGy, G, G3 be left modules oveR, g be a map fromG; into Gz, and f be a map
from G into G,. Suppose the left module morphism structur&of (G, Gs, g) and the left
module morphism structure &f = (G1,Gy, f). ThenG-F = (G3,G3,9- f).

Next we state the proposition

(ZOE] Let G be a morphism fron®; to Gz andF be a morphism fronG; to G,. ThenG-F is a
strict morphism fronis; to Gs.

Let us consideR, G1, G, G3, let G be a morphism fronG; to Gz, and letF be a morphism
from G; to G;. The functorG « F yields a strict morphism fror®; to Gz and is defined by:

(Def. 14) G«F=G-F.

We now state several propositions:

(21) LetG be a morphism fronG, to Gz, F be a morphism front; to Gy, g be a map from
G, into Gz, and f be a map fronG; into G,. If G = (Gy,Gs,g) andF = (G1,Gy, f), then
GxF = (G1,Gs,9- f) andG-F = (G4,G3,9- f).

(22) Letf, gbe strict left module morphisms & Suppose dom= codf. Then there exist left
modulesG;, G,, Gz overR and there exists a mdi from G; into G, and there exists a map
go from Gy into Gz such thatf = (G1, Gy, fo) andg = (G2, Gz, go) andg- f = (G1,G3,do- fo).

(23) For all strict left module morphismis g of R such that dorg = codf holds donfg- f) =
domf and codg- f) = codg.

(24) LetG,, Gy, Gz, G4 be left modules oveR, f be a strict morphism fron®s; to Gy, g be a
strict morphism fromG; to Gz, andh be a strict morphism fron®s to G4. Thenh-(g- f) =
(h-g)-f.

(25) For all strict left module morphisnis g, h of Rsuch that dorh = codg and dong = codf
holdsh-(g- f)=(h-g)- f.
(26)()) dom(lg) =G,
(i) cod(lg) =G,
(i)  for every strict left module morphisnfi of R such that cod =G holds ;- f = f, and
(iv) for every strict left module morphism of R such that dorg = G holdsg-lg = g.

6 The proposition (19) has been removed.
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Let us consider, y, z. Observe thafx,y,z} is non empty.
One can prove the following three propositions:

(28 For all elements, v, w of U1 holds{u,v,w} is an element of);.
(29) For every element of U1 holds sucei is an element ofJ;.

(30) Ois anelement df; and 1 is an element &f; and 2 is an element &f;.

In the sequed, b are elements 0of0, 1,2}
Let us considea. The functor—ayielding an element of0, 1,2} is defined by:

(Def. 15)(i) —a=0ifa=0,
(i) —a=2ifa=1,
(i) —-a=1lifa=2.
Let us consideb. The functora+ b yields an element of0, 1,2} and is defined as follows:
(Def. 16)(i) a+b=Dbifa=0,
(i) a+b=aifb=0,
(i) a+b=2ifa=1landb=1
(iv) a+b=0ifa=1andb=2,
(v) a+b=0ifa=2andb=1,
(vi)j a+b=1lifa=2andb=2.
The functora- b yielding an element of0, 1, 2} is defined as follows:
(Def. 17)()) a-b=0ifb=0,
(i) a-b=0ifa=0,
(i) a-b=aifb=1,
(iv) a-b=bifa=1,
(v) a-b=1lifa=2andb=2
The binary operation adabn {0,1,2} is defined by:
(Def. 18) add(a, b) =a+b.
The binary operation mwton {0, 1,2} is defined as follows:
(Def. 19) mulg(a, b) =a-b.
The unary operation compbn {0, 1,2} is defined as follows:
(Def. 20) compi(a) = —a
The element unitof {0, 1,2} is defined as follows:
(Def. 21) unig=1.
The element zegpof {0, 1,2} is defined as follows:
(Def. 22) zerg=0.
The strict double loop structuggs is defined as follows:
(Def. 23) 73 =({0,1,2},add;, mults, units, zeras).

One can verify thags is non empty.
One can prove the following proposition

" The proposition (27) has been removed.
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(32f) 0z =0,

(i) 1z,=1,

(i) 0z, is an element 0f0, 1,2},
(iv) 1z, is anelement of0,1,2},

(v) the addition ofzz = add;, and
(vi) the multiplication ofzz = mults.

One can check that; is add-associative, right zeroed, and right complementable.
We now state several propositions:

(33) Letx, y be scalars ofz3 and X, Y be elements 0f0,1,2}. If X =x andY =y, then
Xx+y=X+Yandx-y=X-Y and—x= —X.

(34) Letx,y, zbe scalars of3 andX, Y, Z be elements 0f0,1,2}. SupposeX = x andY =y
andZ =z Thenx+y+z=X+Y+Z andx+ (y+z) =X+ (Y+Z) andx-y-z=X-Y-Z
andx- (y-z2) =X-(Y-2).

(35) Letx,y, z a, bbe elements 0f0,1,2}. Suppose& =0 andb = 1. Thenx+y=y+xand
(X+Yy)+z=x+(y+2) andx+a=xandx+ —x=aandx-y=y-xand(x-y)-z=x-(y-2)
andb-x=x and if x # a, then there exists an elemenbf {0,1,2} such thatx-y =b and
a#bandx-(y+2z) =x-y+x-z

(36) LetF be a non empty double loop structure. Suppose that for all scalgrz of F holds
Xx+y=y+xand(x+y)+z=x+(y+2z) andx+ 0 = xandx+ —x=0g andx-y=y-X
and(x-y)-z=x-(y-z) and1g -x = x and ifx # Og, then there exists a scakaof F such that
x-y=1f and @ # 1¢ andx- (y+2) = x-y+X-z ThenF is a field.

(37) Zzsis aFanoian field.

One can verify thags is Fanoian, add-associative, right zeroed, right complementable, Abelian,
commutative, associative, left unital, distributive, and field-like.
The following two propositions are true:

(38) For every functiorf from D into D’ such thaD € U; andD’ € U holdsf € U;.

(40ﬂi) The carrier ofzz € Uy,
(ii) the addition ofzs is an element ofJ;,
(i) compzsis an element o)y,
(iv) the zero ofzzis an element ofly,
(v) the multiplication ofzz is an element ofJ;, and
(vi) the unity ofzz is an element o).
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