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Summary. We define the trivial left module, morphism of left modules and the field
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The articles [12], [11], [5], [14], [3], [4], [1], [13], [6], [8], [10], [7], [9], and [2] provide the notation
and terminology for this paper.

For simplicity, we use the following convention:x, y, z denote sets,D, D′ denote non empty
sets,R denotes a ring,G, H, Sdenote non empty vector space structures overR, andU1 denotes a
universal class.

Let us considerR. The functorRΘ yields a strict left module overRand is defined as follows:

(Def. 2)1 RΘ = 〈{ /0},op2,op0,π2((the carrier ofR)×{ /0})〉.

Next we state the proposition

(1) For every vectorx of RΘ holdsx = 0RΘ.

Let Rbe a non empty double loop structure, letG, H be non empty vector space structures over
R, and let f be a map fromG into H. We say thatf is linear if and only if the conditions (Def. 5)
are satisfied.

(Def. 5)2(i) For all vectorsx, y of G holds f (x+y) = f (x)+ f (y), and

(ii) for every scalara of Rand for every vectorx of G holds f (a·x) = a· f (x).

Next we state two propositions:

(4)3 For every mapf from G into H such thatf is linear holdsf is additive.

(6)4 Let f be a map fromG into H andg be a map fromH into S. If f is linear andg is linear,
theng· f is linear.

In the sequelRdenotes a ring andG, H denote left modules overR.
The following proposition is true

(8)5 ZeroMap(G,H) is linear.

1 The definition (Def. 1) has been removed.
2 The definitions (Def. 3) and (Def. 4) have been removed.
3 The propositions (2) and (3) have been removed.
4 The proposition (5) has been removed.
5 The proposition (7) has been removed.
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In the sequelG1, G2, G3 are left modules overR.
Let us considerR. We consider left module morphism structures overRas systems
〈 a dom-map, a cod-map, aFun 〉,

where the dom-map and the cod-map are left modules overR and theFun is a map from the
dom-map into the cod-map.

In the sequelf is a left module morphism structure overR.
Let us considerR, f . The functor domf yielding a left module overR is defined by:

(Def. 6) domf = the dom-map off .

The functor codf yields a left module overRand is defined by:

(Def. 7) codf = the cod-map off .

Let us considerR, f . The functor funf yields a map from domf into codf and is defined by:

(Def. 8) funf = theFun of f .

We now state the proposition

(9) For every mapf0 from G1 into G2 such thatf = 〈G1,G2, f0〉 holds domf = G1 and codf =
G2 and funf = f0.

Let us considerR, G, H. The functor ZERO(G,H) yields a strict left module morphism structure
overRand is defined by:

(Def. 9) ZERO(G,H) = 〈G,H,ZeroMap(G,H)〉.

Let us considerR and letI1 be a left module morphism structure overR. We say thatI1 is left
module morphism-like if and only if:

(Def. 10) funI1 is linear.

Let us considerR. Note that there exists a left module morphism structure overRwhich is strict
and left module morphism-like.

Let us considerR. A left module morphism ofR is a left module morphism-like left module
morphism structure overR.

Next we state the proposition

(10) For every left module morphismF of Rholds theFun of F is linear.

Let us considerR, G, H. Observe that ZERO(G,H) is left module morphism-like.
Let us considerR, G, H. A left module morphism ofR is said to be a morphism fromG to H if:

(Def. 11) domit= G and codit= H.

Let us considerR, G, H. Note that there exists a morphism fromG to H which is strict.
We now state three propositions:

(11) Let f be a left module morphism structure overR. If dom f = G and codf = H and funf
is linear, thenf is a morphism fromG to H.

(12) For every mapf from G into H such thatf is linear holds〈G,H, f 〉 is a strict morphism
from G to H.

(13) idG is linear.

Let us considerR, G. The functor IG yields a strict morphism fromG to G and is defined by:

(Def. 12) IG = 〈G,G, idG〉.

Let us considerR, G, H. Then ZERO(G,H) is a strict morphism fromG to H.
The following propositions are true:
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(14) LetF be a morphism fromG to H. Then there exists a mapf from G into H such that the
left module morphism structure ofF = 〈G,H, f 〉 and f is linear.

(15) For every strict morphismF from G to H there exists a mapf from G into H such that
F = 〈G,H, f 〉.

(16) For every left module morphismF of R there existG, H such thatF is a morphism fromG
to H.

(17) Let F be a strict left module morphism ofR. Then there exist left modulesG, H over R
and there exists a mapf from G into H such thatF is a strict morphism fromG to H and
F = 〈G,H, f 〉 and f is linear.

(18) Letg, f be left module morphisms ofR. Suppose domg = cod f . Then there existG1, G2,
G3 such thatg is a morphism fromG2 to G3 and f is a morphism fromG1 to G2.

Let us considerRand letG, F be left module morphisms ofR. Let us assume that domG= codF.
The functorG·F yielding a strict left module morphism ofR is defined by the condition (Def. 13).

(Def. 13) LetG1, G2, G3 be left modules overR, g be a map fromG2 into G3, and f be a map
from G1 into G2. Suppose the left module morphism structure ofG = 〈G2,G3,g〉 and the left
module morphism structure ofF = 〈G1,G2, f 〉. ThenG·F = 〈G1,G3,g· f 〉.

Next we state the proposition

(20)6 Let G be a morphism fromG2 to G3 andF be a morphism fromG1 to G2. ThenG ·F is a
strict morphism fromG1 to G3.

Let us considerR, G1, G2, G3, let G be a morphism fromG2 to G3, and letF be a morphism
from G1 to G2. The functorG∗F yields a strict morphism fromG1 to G3 and is defined by:

(Def. 14) G∗F = G·F.

We now state several propositions:

(21) LetG be a morphism fromG2 to G3, F be a morphism fromG1 to G2, g be a map from
G2 into G3, and f be a map fromG1 into G2. If G = 〈G2,G3,g〉 andF = 〈G1,G2, f 〉, then
G∗F = 〈G1,G3,g· f 〉 andG·F = 〈G1,G3,g· f 〉.

(22) Let f , g be strict left module morphisms ofR. Suppose domg= cod f . Then there exist left
modulesG1, G2, G3 overR and there exists a mapf0 from G1 into G2 and there exists a map
g0 from G2 into G3 such thatf = 〈G1,G2, f0〉 andg= 〈G2,G3,g0〉 andg· f = 〈G1,G3,g0 · f0〉.

(23) For all strict left module morphismsf , g of R such that domg = cod f holds dom(g · f ) =
dom f and cod(g· f ) = codg.

(24) LetG1, G2, G3, G4 be left modules overR, f be a strict morphism fromG1 to G2, g be a
strict morphism fromG2 to G3, andh be a strict morphism fromG3 to G4. Thenh · (g · f ) =
(h·g) · f .

(25) For all strict left module morphismsf , g, h of Rsuch that domh= codg and domg= cod f
holdsh· (g· f ) = (h·g) · f .

(26)(i) dom(IG) = G,

(ii) cod(IG) = G,

(iii) for every strict left module morphismf of Rsuch that codf = G holds IG · f = f , and

(iv) for every strict left module morphismg of Rsuch that domg = G holdsg· IG = g.

6 The proposition (19) has been removed.



RINGS AND MODULES— PART II 4

Let us considerx, y, z. Observe that{x,y,z} is non empty.
One can prove the following three propositions:

(28)7 For all elementsu, v, w of U1 holds{u,v,w} is an element ofU1.

(29) For every elementu of U1 holds succu is an element ofU1.

(30) 0 is an element ofU1 and 1 is an element ofU1 and 2 is an element ofU1.

In the sequela, b are elements of{0,1,2}.
Let us considera. The functor−a yielding an element of{0,1,2} is defined by:

(Def. 15)(i) −a = 0 if a = 0,

(ii) −a = 2 if a = 1,

(iii) −a = 1 if a = 2.

Let us considerb. The functora+b yields an element of{0,1,2} and is defined as follows:

(Def. 16)(i) a+b = b if a = 0,

(ii) a+b = a if b = 0,

(iii) a+b = 2 if a = 1 andb = 1,

(iv) a+b = 0 if a = 1 andb = 2,

(v) a+b = 0 if a = 2 andb = 1,

(vi) a+b = 1 if a = 2 andb = 2.

The functora·b yielding an element of{0,1,2} is defined as follows:

(Def. 17)(i) a·b = 0 if b = 0,

(ii) a·b = 0 if a = 0,

(iii) a·b = a if b = 1,

(iv) a·b = b if a = 1,

(v) a·b = 1 if a = 2 andb = 2.

The binary operation add3 on{0,1,2} is defined by:

(Def. 18) add3(a, b) = a+b.

The binary operation mult3 on{0,1,2} is defined as follows:

(Def. 19) mult3(a, b) = a·b.

The unary operation compl3 on{0,1,2} is defined as follows:

(Def. 20) compl3(a) = −a.

The element unit3 of {0,1,2} is defined as follows:

(Def. 21) unit3 = 1.

The element zero3 of {0,1,2} is defined as follows:

(Def. 22) zero3 = 0.

The strict double loop structureZ3 is defined as follows:

(Def. 23) Z3 = 〈{0,1,2},add3,mult3,unit3,zero3〉.

One can verify thatZ3 is non empty.
One can prove the following proposition

7 The proposition (27) has been removed.
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(32)8(i) 0Z3 = 0,

(ii) 1Z3 = 1,

(iii) 0Z3 is an element of{0,1,2},

(iv) 1Z3 is an element of{0,1,2},

(v) the addition ofZ3 = add3, and

(vi) the multiplication ofZ3 = mult3 .

One can check thatZ3 is add-associative, right zeroed, and right complementable.
We now state several propositions:

(33) Let x, y be scalars ofZ3 and X, Y be elements of{0,1,2}. If X = x andY = y, then
x+y = X +Y andx ·y = X ·Y and−x = −X.

(34) Letx, y, z be scalars ofZ3 andX, Y, Z be elements of{0,1,2}. SupposeX = x andY = y
andZ = z. Thenx+ y+ z= X +Y + Z andx+(y+ z) = X +(Y + Z) andx · y · z= X ·Y ·Z
andx · (y·z) = X · (Y ·Z).

(35) Letx, y, z, a, b be elements of{0,1,2}. Supposea = 0 andb = 1. Thenx+y = y+x and
(x+y)+z= x+(y+z) andx+a = x andx+−x = a andx ·y = y·x and(x ·y) ·z= x · (y·z)
andb · x = x and if x 6= a, then there exists an elementy of {0,1,2} such thatx · y = b and
a 6= b andx · (y+z) = x ·y+x ·z.

(36) LetF be a non empty double loop structure. Suppose that for all scalarsx, y, z of F holds
x+ y = y+ x and(x+ y)+ z= x+(y+ z) andx+ 0F = x andx+−x = 0F andx · y = y · x
and(x·y) ·z= x· (y·z) and1F ·x = x and ifx 6= 0F , then there exists a scalary of F such that
x ·y = 1F and 0F 6= 1F andx · (y+z) = x ·y+x ·z. ThenF is a field.

(37) Z3 is a Fanoian field.

One can verify thatZ3 is Fanoian, add-associative, right zeroed, right complementable, Abelian,
commutative, associative, left unital, distributive, and field-like.

The following two propositions are true:

(38) For every functionf from D into D′ such thatD ∈U1 andD′ ∈U1 holds f ∈U1.

(40)9(i) The carrier ofZ3 ∈U1,

(ii) the addition ofZ3 is an element ofU1,

(iii) compZ3 is an element ofU1,

(iv) the zero ofZ3 is an element ofU1,

(v) the multiplication ofZ3 is an element ofU1, and

(vi) the unity ofZ3 is an element ofU1.
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