Rings and Modules — Part II

Michał Muzalewski Warsaw University Białystok

Summary. We define the trivial left module, morphism of left modules and the field Z_3 . We prove some elementary facts.

MML Identifier: MOD 2.

WWW: http://mizar.org/JFM/Vol3/mod_2.html

The articles [12], [11], [5], [14], [3], [4], [1], [13], [6], [8], [10], [7], [9], and [2] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, y, z denote sets, D, D' denote non empty sets, R denotes a ring, G, H, S denote non empty vector space structures over R, and U_1 denotes a universal class.

Let us consider R. The functor $_R\Theta$ yields a strict left module over R and is defined as follows:

(Def. 2)¹
$$_R\Theta = \langle \{\emptyset\}, op_2, op_0, \pi_2(\text{(the carrier of } R) \times \{\emptyset\}) \rangle.$$

Next we state the proposition

(1) For every vector x of $_R\Theta$ holds $x = 0_{_R\Theta}$.

Let R be a non empty double loop structure, let G, H be non empty vector space structures over R, and let f be a map from G into H. We say that f is linear if and only if the conditions (Def. 5) are satisfied.

- (Def. 5)²(i) For all vectors x, y of G holds f(x+y) = f(x) + f(y), and
 - (ii) for every scalar a of R and for every vector x of G holds $f(a \cdot x) = a \cdot f(x)$.

Next we state two propositions:

- (4)³ For every map f from G into H such that f is linear holds f is additive.
- (6)⁴ Let f be a map from G into H and g be a map from H into S. If f is linear and g is linear, then $g \cdot f$ is linear.

In the sequel R denotes a ring and G, H denote left modules over R. The following proposition is true

 $(8)^5$ ZeroMap(G, H) is linear.

¹ The definition (Def. 1) has been removed.

² The definitions (Def. 3) and (Def. 4) have been removed.

³ The propositions (2) and (3) have been removed.

⁴ The proposition (5) has been removed.

⁵ The proposition (7) has been removed.

In the sequel G_1 , G_2 , G_3 are left modules over R.

Let us consider R. We consider left module morphism structures over R as systems

⟨ a dom-map, a cod-map, a Fun ⟩,

where the dom-map and the cod-map are left modules over R and the Fun is a map from the dom-map into the cod-map.

In the sequel f is a left module morphism structure over R.

Let us consider R, f. The functor dom f yielding a left module over R is defined by:

(Def. 6) $\operatorname{dom} f = \operatorname{the dom-map} \operatorname{of} f$.

The functor cod f yields a left module over R and is defined by:

(Def. 7) $\operatorname{cod} f = \operatorname{the cod-map} \operatorname{of} f$.

Let us consider R, f. The functor fun f yields a map from dom f into cod f and is defined by:

(Def. 8) fun f = the Fun of f.

We now state the proposition

(9) For every map f_0 from G_1 into G_2 such that $f = \langle G_1, G_2, f_0 \rangle$ holds dom $f = G_1$ and cod $f = G_2$ and fun $f = f_0$.

Let us consider R, G, H. The functor ZERO(G,H) yields a strict left module morphism structure over R and is defined by:

(Def. 9) $ZERO(G,H) = \langle G, H, ZeroMap(G,H) \rangle$.

Let us consider R and let I_1 be a left module morphism structure over R. We say that I_1 is left module morphism-like if and only if:

(Def. 10) $\operatorname{fun} I_1$ is linear.

Let us consider R. Note that there exists a left module morphism structure over R which is strict and left module morphism-like.

Let us consider R. A left module morphism of R is a left module morphism-like left module morphism structure over R.

Next we state the proposition

(10) For every left module morphism F of R holds the Fun of F is linear.

Let us consider R, G, H. Observe that ZERO(G,H) is left module morphism-like.

Let us consider R, G, H. A left module morphism of R is said to be a morphism from G to H if:

(Def. 11) domit = G and codit = H.

Let us consider R, G, H. Note that there exists a morphism from G to H which is strict. We now state three propositions:

- (11) Let f be a left module morphism structure over R. If dom f = G and cod f = H and fun f is linear, then f is a morphism from G to H.
- (12) For every map f from G into H such that f is linear holds $\langle G, H, f \rangle$ is a strict morphism from G to H.
- (13) id_G is linear.

Let us consider R, G. The functor I_G yields a strict morphism from G to G and is defined by:

(Def. 12) $I_G = \langle G, G, id_G \rangle$.

Let us consider R, G, H. Then $\mathsf{ZERO}(G,H)$ is a strict morphism from G to H.

The following propositions are true:

- (14) Let F be a morphism from G to H. Then there exists a map f from G into H such that the left module morphism structure of $F = \langle G, H, f \rangle$ and f is linear.
- (15) For every strict morphism F from G to H there exists a map f from G into H such that $F = \langle G, H, f \rangle$.
- (16) For every left module morphism *F* of *R* there exist *G*, *H* such that *F* is a morphism from *G* to *H*.
- (17) Let F be a strict left module morphism of R. Then there exist left modules G, H over R and there exists a map f from G into H such that F is a strict morphism from G to H and $F = \langle G, H, f \rangle$ and f is linear.
- (18) Let g, f be left module morphisms of R. Suppose dom $g = \operatorname{cod} f$. Then there exist G_1 , G_2 , G_3 such that g is a morphism from G_2 to G_3 and f is a morphism from G_1 to G_2 .

Let us consider R and let G, F be left module morphisms of R. Let us assume that dom $G = \operatorname{cod} F$. The functor $G \cdot F$ yielding a strict left module morphism of R is defined by the condition (Def. 13).

(Def. 13) Let G_1 , G_2 , G_3 be left modules over R, g be a map from G_2 into G_3 , and f be a map from G_1 into G_2 . Suppose the left module morphism structure of $G = \langle G_2, G_3, g \rangle$ and the left module morphism structure of $F = \langle G_1, G_2, f \rangle$. Then $G \cdot F = \langle G_1, G_3, g \cdot f \rangle$.

Next we state the proposition

(20)⁶ Let G be a morphism from G_2 to G_3 and F be a morphism from G_1 to G_2 . Then $G \cdot F$ is a strict morphism from G_1 to G_3 .

Let us consider R, G_1 , G_2 , G_3 , let G be a morphism from G_2 to G_3 , and let F be a morphism from G_1 to G_2 . The functor G * F yields a strict morphism from G_1 to G_3 and is defined by:

(Def. 14) $G * F = G \cdot F$.

We now state several propositions:

- (21) Let G be a morphism from G_2 to G_3 , F be a morphism from G_1 to G_2 , g be a map from G_2 into G_3 , and f be a map from G_1 into G_2 . If $G = \langle G_2, G_3, g \rangle$ and $F = \langle G_1, G_2, f \rangle$, then $G * F = \langle G_1, G_3, g \cdot f \rangle$ and $G \cdot F = \langle G_1, G_3, g \cdot f \rangle$.
- (22) Let f, g be strict left module morphisms of R. Suppose dom $g = \operatorname{cod} f$. Then there exist left modules G_1 , G_2 , G_3 over R and there exists a map g_0 from G_2 into G_3 such that $f = \langle G_1, G_2, f_0 \rangle$ and $g = \langle G_2, G_3, g_0 \rangle$ and $g \cdot f = \langle G_1, G_3, g_0 \cdot f_0 \rangle$.
- (23) For all strict left module morphisms f, g of R such that dom g = cod f holds $dom(g \cdot f) = dom f$ and $cod(g \cdot f) = cod g$.
- (24) Let G_1 , G_2 , G_3 , G_4 be left modules over R, f be a strict morphism from G_1 to G_2 , g be a strict morphism from G_2 to G_3 , and h be a strict morphism from G_3 to G_4 . Then $h \cdot (g \cdot f) = (h \cdot g) \cdot f$.
- (25) For all strict left module morphisms f, g, h of R such that dom h = cod g and dom g = cod f holds $h \cdot (g \cdot f) = (h \cdot g) \cdot f$.
- $(26)(i) \quad \operatorname{dom}(\mathbf{I}_G) = G,$
- (ii) $cod(I_G) = G$,
- (iii) for every strict left module morphism f of R such that $\operatorname{cod} f = G$ holds $\operatorname{I}_G \cdot f = f$, and
- (iv) for every strict left module morphism g of R such that dom g = G holds $g \cdot I_G = g$.

⁶ The proposition (19) has been removed.

Let us consider x, y, z. Observe that $\{x,y,z\}$ is non empty. One can prove the following three propositions:

- (28)⁷ For all elements u, v, w of U_1 holds $\{u, v, w\}$ is an element of U_1 .
- (29) For every element u of U_1 holds $\operatorname{succ} u$ is an element of U_1 .
- (30) 0 is an element of U_1 and 1 is an element of U_1 and 2 is an element of U_1 .

In the sequel a, b are elements of $\{0, 1, 2\}$.

Let us consider a. The functor -a yielding an element of $\{0,1,2\}$ is defined by:

- (Def. 15)(i) -a = 0 if a = 0,
 - (ii) -a = 2 if a = 1,
 - (iii) -a = 1 if a = 2.

Let us consider b. The functor a+b yields an element of $\{0,1,2\}$ and is defined as follows:

(Def. 16)(i)
$$a+b=b$$
 if $a=0$,

- (ii) a+b=a if b=0,
- (iii) a+b=2 if a=1 and b=1,
- (iv) a+b=0 if a=1 and b=2,
- (v) a+b=0 if a=2 and b=1,
- (vi) a+b=1 if a=2 and b=2.

The functor $a \cdot b$ yielding an element of $\{0, 1, 2\}$ is defined as follows:

(Def. 17)(i)
$$a \cdot b = 0$$
 if $b = 0$,

- (ii) $a \cdot b = 0$ if a = 0,
- (iii) $a \cdot b = a \text{ if } b = 1$,
- (iv) $a \cdot b = b$ if a = 1,
- (v) $a \cdot b = 1$ if a = 2 and b = 2.

The binary operation add₃ on $\{0,1,2\}$ is defined by:

(Def. 18)
$$add_3(a, b) = a + b$$
.

The binary operation $mult_3$ on $\{0, 1, 2\}$ is defined as follows:

(Def. 19)
$$\text{mult}_3(a, b) = a \cdot b$$
.

The unary operation compl₃ on $\{0,1,2\}$ is defined as follows:

(Def. 20)
$$\text{compl}_{3}(a) = -a$$
.

The element unit₃ of $\{0,1,2\}$ is defined as follows:

(Def. 21)
$$unit_3 = 1$$
.

The element zero₃ of $\{0,1,2\}$ is defined as follows:

(Def. 22)
$$zero_3 = 0$$
.

The strict double loop structure \mathbb{Z}_3 is defined as follows:

(Def. 23)
$$Z_3 = \langle \{0, 1, 2\}, add_3, mult_3, unit_3, zero_3 \rangle$$
.

One can verify that Z_3 is non empty.

One can prove the following proposition

⁷ The proposition (27) has been removed.

- $(32)^8(i)$ $0_{Z_3} = 0$,
- (ii) $\mathbf{1}_{Z_3} = 1$,
- (iii) $0_{\mathbb{Z}_3}$ is an element of $\{0,1,2\}$,
- (iv) $\mathbf{1}_{Z_3}$ is an element of $\{0, 1, 2\}$,
- (v) the addition of $Z_3 = add_3$, and
- (vi) the multiplication of $Z_3 = \text{mult}_3$.

One can check that Z_3 is add-associative, right zeroed, and right complementable. We now state several propositions:

- (33) Let x, y be scalars of Z_3 and X, Y be elements of $\{0,1,2\}$. If X = x and Y = y, then x + y = X + Y and $x \cdot y = X \cdot Y$ and -x = -X.
- (34) Let x, y, z be scalars of Z_3 and X, Y, Z be elements of $\{0,1,2\}$. Suppose X = x and Y = y and Z = z. Then x + y + z = X + Y + Z and x + (y + z) = X + (Y + Z) and $x \cdot y \cdot z = X \cdot Y \cdot Z$ and $x \cdot (y \cdot z) = X \cdot (Y \cdot Z)$.
- (35) Let x, y, z, a, b be elements of $\{0, 1, 2\}$. Suppose a = 0 and b = 1. Then x + y = y + x and (x + y) + z = x + (y + z) and x + a = x and x + -x = a and $x \cdot y = y \cdot x$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $b \cdot x = x$ and if $x \neq a$, then there exists an element y of $\{0, 1, 2\}$ such that $x \cdot y = b$ and $a \neq b$ and $x \cdot (y + z) = x \cdot y + x \cdot z$.
- (36) Let F be a non empty double loop structure. Suppose that for all scalars x, y, z of F holds x + y = y + x and (x + y) + z = x + (y + z) and $x + 0_F = x$ and $x + -x = 0_F$ and $x \cdot y = y \cdot x$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ and $\mathbf{1}_F \cdot x = x$ and if $x \neq 0_F$, then there exists a scalar y of F such that $x \cdot y = \mathbf{1}_F$ and $0_F \neq \mathbf{1}_F$ and $x \cdot (y + z) = x \cdot y + x \cdot z$. Then F is a field.
- (37) Z_3 is a Fanoian field.

One can verify that Z_3 is Fanoian, add-associative, right zeroed, right complementable, Abelian, commutative, associative, left unital, distributive, and field-like.

The following two propositions are true:

- (38) For every function f from D into D' such that $D \in U_1$ and $D' \in U_1$ holds $f \in U_1$.
- $(40)^9$ (i) The carrier of $\mathbb{Z}_3 \in U_1$,
- (ii) the addition of \mathbb{Z}_3 is an element of U_1 ,
- (iii) comp \mathbb{Z}_3 is an element of U_1 ,
- (iv) the zero of \mathbb{Z}_3 is an element of U_1 ,
- (v) the multiplication of Z_3 is an element of U_1 , and
- (vi) the unity of \mathbb{Z}_3 is an element of U_1 .

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2 html
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.

⁸ The proposition (31) has been removed.

⁹ The proposition (39) has been removed.

- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [7] Michał Muzalewski. Midpoint algebras. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/midsp_1.html.
- [8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [9] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html.
- [10] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/classes2.html.
- [11] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [13] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/rlvect_1.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received October 18, 1991

Published January 2, 2004