Groups, Rings, Left- and Right-Modules¹

Michał Muzalewski Warsaw University Białystok Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. The notion of group was defined as a group structure introduced in the article [1]. The article contains the basic properties of groups, rings, left- and right-modules of an associative ring.

MML Identifier: MOD_1.

WWW: http://mizar.org/JFM/Vol2/mod_1.html

The articles [3], [1], and [2] provide the notation and terminology for this paper.

A group is an add-associative right zeroed right complementable non empty loop structure. The following two propositions are true:

- (13)¹ Let K be an add-associative right zeroed right complementable right distributive right unital non empty double loop structure and a be an element of K. Then $a \cdot -\mathbf{1}_K = -a$.
- (14) Let K be an add-associative right zeroed right complementable left distributive left unital non empty double loop structure and a be an element of K. Then $(-\mathbf{1}_K) \cdot a = -a$.

For simplicity, we use the following convention: R is an Abelian add-associative right zeroed right complementable associative left unital right unital distributive non empty double loop structure, F is a non degenerated field-like ring, x is a scalar of F, V is an add-associative right zeroed right complementable vector space-like non empty vector space structure over F, and v is a vector of V.

One can prove the following two propositions:

$$(25)^2$$
 $x \cdot v = 0_V$ iff $x = 0_F$ or $v = 0_V$.

(26) If
$$x \neq 0_F$$
, then $x^{-1} \cdot (x \cdot v) = v$.

In the sequel V denotes an add-associative right zeroed right complementable right module-like non empty right module structure over R, x denotes a scalar of R, and v, w denote vectors of V.

Next we state four propositions:

$$(37)^3$$
 $v \cdot 0_R = 0_V$ and $v \cdot -1_R = -v$ and $0_V \cdot x = 0_V$.

(38)
$$-v \cdot x = v \cdot -x$$
 and $w - v \cdot x = w + v \cdot -x$.

$$(39) \quad (-v) \cdot x = -v \cdot x.$$

¹Supported by RPBP.III-24.C6.

The propositions (1)–(12) have been removed.

² The propositions (15)–(24) have been removed.

³ The propositions (27)–(36) have been removed.

$$(40) \quad (v-w) \cdot x = v \cdot x - w \cdot x.$$

In the sequel F is a non degenerated field-like ring, x is a scalar of F, V is an add-associative right zeroed right complementable right module-like non empty right module structure over F, and v is a vector of V.

Next we state two propositions:

$$(42)^4$$
 $v \cdot x = 0_V$ iff $x = 0_F$ or $v = 0_V$.

(43) If
$$x \neq 0_F$$
, then $v \cdot x \cdot x^{-1} = v$.

REFERENCES

- [1] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [2] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [3] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_l.html.

Received October 22, 1990

Published January 2, 2004

⁴ The proposition (41) has been removed.