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Summary. Sequences in metric spaces are defined. The article contains definitions
of bounded, convergent, Cauchy sequences. The subsequences are introduced too. Some
theorems concerning sequences are proved.
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The articles [15], [5], [17], [1], [16], [12], [18], [3], [4], [7], [8], [11], [9], [10], [2], [6], [13], and
[14] provide the notation and terminology for this paper.

For simplicity, we follow the rules:X is a metric space,x, y, z are elements ofX, A is a non
empty set,a is an element ofA, G is a function from[:A, A:] into R, n, m are natural numbers, and
r is a real number.

Next we state several propositions:

(1) |ρ(x,z)−ρ(y,z)| ≤ ρ(x,y).

(2) If G is a metric ofA, then for all elementsa, b of A holds 0≤G(a, b).

(3) G is a metric ofA iff G is Reflexive, discernible, symmetric, and triangle.

(4) For every strict non empty metric spaceX holds the distance ofX is Reflexive, discernible,
symmetric, and triangle.

(5) G is a metric ofA if and only if the following conditions are satisfied:

(i) G is Reflexive and discernible, and

(ii) for all elementsa, b, c of A holdsG(b, c)≤G(a, b)+G(a, c).

Let us considerA and let us considerG. The functorG̃A yielding a function from[:A, A:] into R
is defined as follows:

(Def. 4)1 For all elementsa, b of A holdsG̃A(a, b) = G(a,b)
1+G(a,b) .

The following proposition is true

(6) If G is a metric ofA, thenG̃A is a metric ofA.

For simplicity, we use the following convention:X is a non empty metric space,x, y are elements
of X, V is a subset ofX, S, S1, T are sequences ofX, andF is a function fromN into the carrier of
X.

Next we state two propositions:

1 The definitions (Def. 1)–(Def. 3) have been removed.
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(8)2 F is a sequence ofX iff for every a such thata∈ N holdsF(a) is an element ofX.

(10)3 For everyx there existsSsuch that rngS= {x}.

Let us considerX, let us considerS, and let us considerx. We say thatS is convergent tox if and
only if:

(Def. 8)4 For everyr such that 0< r there existsm such that for everyn such thatm≤ n holds
ρ(S(n),x) < r.

Let us considerX and letV be a subset ofX. Let us observe thatV is bounded if and only if:

(Def. 10)5 There existr, x such that 0< r andV ⊆ Ball(x, r).

Let us considerX and let us considerS. We say thatS is bounded if and only if:

(Def. 11) There existr, x such that 0< r and rngS⊆ Ball(x, r).

Let us considerX, let us considerV, and let us considerS. We say thatV contains almost all
sequenceS if and only if:

(Def. 12) There existsmsuch that for everyn such thatm≤ n holdsS(n) ∈V.

The following propositions are true:

(20)6 S is bounded iff there existr, x such that 0< r and for everyn holdsS(n) ∈ Ball(x, r).

(21) If S is convergent tox, thenS is convergent.

(22) If S is convergent, then there existsx such thatS is convergent tox.

Let us considerX, let us considerS, and let us considerx. The functorρ(S,x) yields a sequence
of real numbers and is defined by:

(Def. 14)7 For everyn holds(ρ(S,x))(n) = ρ(S(n),x).

Let us considerX, let us considerS, and let us considerT. The functorρ(S,T) yielding a
sequence of real numbers is defined as follows:

(Def. 15) For everyn holds(ρ(S,T))(n) = ρ(S(n),T(n)).

Let us considerX and let us considerS. Let us assume thatS is convergent. The functor limS
yields an element ofX and is defined as follows:

(Def. 16) For everyr such that 0< r there existsm such that for everyn such thatm≤ n holds
ρ(S(n), lim S) < r.

One can prove the following propositions:

(26)8 If S is convergent tox, then limS= x.

(27) S is convergent tox iff S is convergent and limS= x.

(28) If S is convergent, then there existsx such thatS is convergent tox and limS= x.

(29) S is convergent tox iff ρ(S,x) is convergent and limρ(S,x) = 0.

2 The proposition (7) has been removed.
3 The proposition (9) has been removed.
4 The definitions (Def. 5)–(Def. 7) have been removed.
5 The definition (Def. 9) has been removed.
6 The propositions (11)–(19) have been removed.
7 The definition (Def. 13) has been removed.
8 The propositions (23)–(25) have been removed.
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(30) If S is convergent tox, then for everyr such that 0< r holds Ball(x, r) contains almost all
sequenceS.

(31) Suppose that for everyr such that 0< r holds Ball(x, r) contains almost all sequenceS.
Let givenV. Supposex ∈ V andV ∈ the open set family ofX. ThenV contains almost all
sequenceS.

(32) Suppose that for everyV such thatx∈V andV ∈ the open set family ofX holdsV contains
almost all sequenceS. ThenS is convergent tox.

(33) S is convergent tox iff for every r such that 0< r holds Ball(x, r) contains almost all
sequenceS.

(34) S is convergent tox if and only if for everyV such thatx∈V andV ∈ the open set family
of X holdsV contains almost all sequenceS.

(35) The following statements are equivalent

(i) for everyr such that 0< r holds Ball(x, r) contains almost all sequenceS,

(ii) for everyV such thatx∈V andV ∈ the open set family ofX holdsV contains almost all
sequenceS.

(36) If S is convergent andT is convergent, thenρ(lim S, lim T) = lim ρ(S,T).

(37) If S is convergent tox and convergent toy, thenx = y.

(38) If S is constant, thenS is convergent.

(39) If S is convergent tox andS1 is a subsequence ofS, thenS1 is convergent tox.

(40) If S is Cauchy andS1 is a subsequence ofS, thenS1 is Cauchy.

(42)9 If S is constant, thenS is Cauchy.

(43) If S is convergent, thenS is bounded.

(44) If S is Cauchy, thenS is bounded.

Let M be a non empty metric space. One can verify the following observations:

∗ every sequence ofM which is constant is also convergent,

∗ every sequence ofM which is convergent is also Cauchy, and

∗ every sequence ofM which is Cauchy is also bounded.

Let M be a non empty metric space. One can verify that there exists a sequence ofM which is
constant, convergent, Cauchy, and bounded.
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[4] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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