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Summary. Sequences in metric spaces are defined. The article contains definitions
of bounded, convergent, Cauchy sequences. The subsequences are introduced too. Some
theorems concerning sequences are proved.
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The articles[[15],[[5], [[1i7], 1], [116],[[12],[1218],[131,141, 171, (18], [[11], (18], [110],[12], 6], 113], and
[14] provide the notation and terminology for this paper.

For simplicity, we follow the rulesX is a metric spacex, y, z are elements oK, Ais a non
empty setais an element oA, G is a function from[ A, A] into R, n, mare natural numbers, and
r is a real number.

Next we state several propositions:

D) Ipx2)=p(y.2)] < p(xY)-
(2) If Gis a metric ofA, then for all elements, b of A holds 0< G(a, b).
(3) Gisametric ofAiff Gis Reflexive, discernible, symmetric, and triangle.

(4) For every strict non empty metric spaXéolds the distance of is Reflexive, discernible,
symmetric, and triangle.

(5) Gis a metric ofAif and only if the following conditions are satisfied:

(i) Gis Reflexive and discernible, and

(i) for all elementsa, b, c of AholdsG(b, c) < G(a, b) + G(a, ¢).

Let us consideA and let us conside®. The functorGp yielding a function from: A, A] into R
is defined as follows:

(Def. 4E| For all elements, b of A holdsGa(a, b) = ﬁ%(’;%).
The following proposition is true
(6) If Gis ametric ofA, thenGa is a metric ofA.

For simplicity, we use the following conventioK:is a non empty metric space,y are elements
of X,V isasubset oK, S S, T are sequences &, andF is a function fromN into the carrier of
X.

Next we state two propositions:

1 The definitions (Def. 1)—(Def. 3) have been removed.
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(8E] F is a sequence of iff for every a such thad € N holdsF (a) is an element oK.

(10 For everyx there exist$Ssuch that rn&= {x}.

Let us considekK, let us conside§, and let us considet. We say thaSis convergent tx if and
only if:

(Def. 8&] For everyr such that O< r there existan such that for every such thatm < n holds

P(S(n),x) <r.
Let us consideK and letV be a subset oX. Let us observe that is bounded if and only if:
(Def. 10f] There exist, x such that 0< r andV C Ball(x,r).
Let us consideK and let us consides. We say thaBis bounded if and only if:
(Def. 11) There exist, x such that 0< r and rngSC Ball(x,r).

Let us considek, let us conside¥, and let us conside®. We say tha¥/ contains almost all
sequenc&if and only if:

(Def. 12) There existm such that for every such tham < n holdsS(n) € V.
The following propositions are true:
(ZOE] Sis bounded iff there exist, x such that < r and for everyn holdsS(n) € Ball(x,r).
(21) If Sis convergent te, thenSis convergent.

(22) If Sis convergent, then there existsuch thatSis convergent t.

Let us considek, let us conside§, and let us considet. The functop(S x) yields a sequence
of real numbers and is defined by:

(Def. 145] For everyn holds(p(S x))(n) = p(S(n),x).

Let us considelX, let us considefS, and let us considef. The functorp(S T) yielding a
sequence of real numbers is defined as follows:

(Def. 15) For evernynholds(p(ST))(n) = p(S(n), T(n)).

Let us conside and let us conside®. Let us assume th&is convergent. The functor li®
yields an element ok and is defined as follows:

(Def. 16) For everyr such that O< r there existan such that for everyn such thatm < n holds
p(S(n),limS) <.

One can prove the following propositions:
(ZGE] If Sis convergent tx, then limS= x.
(27) Sis convergent tx iff Sis convergent and li8= x.
(28) If Sis convergent, then there existsuch thaSis convergent tax and limS= x.

(29) Sis convergent tiff p(S x) is convergent and lip(S x) = 0.

2 The proposition (7) has been removed.

3 The proposition (9) has been removed.

4 The definitions (Def. 5)-(Def. 7) have been removed.
5 The definition (Def. 9) has been removed.

6 The propositions (11)—(19) have been removed.

7 The definition (Def. 13) has been removed.

8 The propositions (23)—(25) have been removed.
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(30) If Sis convergent t, then for everyr such that O< r holds Bal(x,r) contains almost all
sequencé.

(31) Suppose that for everysuch that O< r holds Ballx,r) contains almost all sequen&
Let givenV. Suppose € V andV € the open set family oK. ThenV contains almost all
sequencés.

(32) Suppose that for eve¥ysuch thak € V andV € the open set family oX holdsV contains
almost all sequenc& ThenSis convergent to.

(33) Sis convergent to iff for every r such that O< r holds Ballx,r) contains almost all
sequencé.

(34) Sis convergent tx if and only if for everyV such that € V andV € the open set family
of X holdsV contains almost all sequen&e

(35) The following statements are equivalent
(i) for everyr such that O< r holds Ballx,r) contains almost all sequen&e

(i) for everyV such thaix € V andV € the open set family oKX holdsV contains almost all
sequencés.

(36) If Sis convergent andl is convergent, thep(limSIlimT) =1limp(ST).
(87) If Sis convergent tax and convergent tg, thenx =.

(388) If Sis constant, theis convergent.

(39) If Sis convergent taxandS; is a subsequence &f thenS; is convergent t.
(40) If Sis Cauchy andh is a subsequence &f thenS; is Cauchy.

(42f] 1f Sis constant, theSis Cauchy.

(43) If Sis convergent, theBis bounded.

(44) If Sis Cauchy, thersis bounded.

Let M be a non empty metric space. One can verify the following observations:
x every sequence &fl which is constant is also convergent,
x every sequence &fl which is convergent is also Cauchy, and
x every sequence &fl which is Cauchy is also bounded.

Let M be a non empty metric space. One can verify that there exists a sequevMogtoth is
constant, convergent, Cauchy, and bounded.
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