Metrics in Cartesian Product ${ }^{1}$

Stanisława Kanas
Technical Univercity of Rzeszów

Jan Stankiewicz
Technical University of Rzeszów

Abstract

Summary. A continuation of paper [6]. It deals with the method of creation of the distance in the Cartesian product of metric spaces. The distance of two points belonging to Cartesian product of metric spaces has been defined as sum of distances of appropriate coordinates (or projections) of these points. It is shown that product of metric spaces with such a distance is a metric space.

MML Identifier: METRIC_3.
WWW:http://mizar.org/JFM/Vol2/metric_3.html

The articles [7], [4], [10], [9], [5], [2], [3], [1], [6], and [8] provide the notation and terminology for this paper.

We adopt the following rules: X, Y denote non empty metric spaces, x_{1}, y_{1}, z_{1} denote elements of X, and x_{2}, y_{2}, z_{2} denote elements of Y.

The scheme LambdaMCART deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a 4-ary functor \mathcal{F} yielding an element of \mathcal{C}, and states that:

There exists a function f from $[:[: \mathcal{A}, \mathcal{B}:],[: \mathcal{A}, \mathcal{B}:]:]$ into \mathcal{C} such that for all elements x_{1}, y_{1} of \mathcal{A} and for all elements x_{2}, y_{2} of \mathcal{B} and for all elements x, y of $[: \mathcal{A}, \mathcal{B}:]$ if $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$, then $f(\langle x, y\rangle)=\mathcal{F}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$
for all values of the parameters.
Let us consider X, Y. The functor $\rho^{X \times Y}$ yielding a function from [: $:$ the carrier of X, the carrier of $Y:]$, $[$: the carrier of X, the carrier of $Y:]$ into \mathbb{R} is defined by the condition (Def. 1).
(Def. 1) Let x_{1}, y_{1} be elements of X, x_{2}, y_{2} be elements of Y, and x, y be elements of $[$ the carrier of X, the carrier of $Y:$. If $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$, then $\rho^{X \times Y}(x, y)=\rho\left(x_{1}, y_{1}\right)+\rho\left(x_{2}, y_{2}\right)$.

One can prove the following propositions:
(2) For all elements a, b of \mathbb{R} such that $a+b=0$ and $0 \leq a$ and $0 \leq b$ holds $a=0$ and $b=0$.
$(5)^{2}$ Let x, y be elements of [: the carrier of X, the carrier of Y :]. If $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}\right.$, $\left.y_{2}\right\rangle$, then $\rho^{X \times Y}(x, y)=0$ iff $x=y$.
(6) For all elements x, y of $\left[\right.$: the carrier of X, the carrier of Y :] such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $\rho^{X \times Y}(x, y)=\rho^{X \times Y}(y, x)$.
(7) Let x, y, z be elements of [: the carrier of X, the carrier of Y :]. If $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}\right.$, $\left.y_{2}\right\rangle$ and $z=\left\langle z_{1}, z_{2}\right\rangle$, then $\rho^{X \times Y}(x, z) \leq \rho^{X \times Y}(x, y)+\rho^{X \times Y}(y, z)$.

Let us consider X, Y and let x, y be elements of $[$: the carrier of X, the carrier of $Y:]$. The functor $\rho(x, y)$ yielding a real number is defined as follows:

[^0](Def. 2) $\rho(x, y)=\rho^{X \times Y}(x, y)$.
Let A be a non empty set and let r be a function from $[: A, A:]$ into \mathbb{R}. Observe that $\langle A, r\rangle$ is non empty.

Let us consider X, Y. The functor $[: X, Y:]$ yields a strict non empty metric space and is defined as follows:
(Def. 3) $\quad[: X, Y:]=\left\langle[\right.$ the carrier of X, the carrier of $\left.Y:], \rho^{X \times Y}\right\rangle$.
One can prove the following proposition
(9] $]^{3}$ [: the carrier of X, the carrier of $\left.\left.Y:\right], \rho^{X \times Y}\right\rangle$ is a metric space.
In the sequel Z is a non empty metric space and x_{3}, y_{3}, z_{3} are elements of Z.
The scheme LambdaMCART1 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and a 6-ary functor \mathcal{F} yielding an element of \mathcal{D}, and states that:

There exists a function f from $[:[: \mathcal{A}, \mathcal{B}, \mathcal{C}:],[: \mathcal{A}, \mathcal{B}, \mathcal{C}:]:]$ into \mathcal{D} such that for all elements x_{1}, y_{1} of \mathcal{A} and for all elements x_{2}, y_{2} of \mathcal{B} and for all elements x_{3}, y_{3} of \mathcal{C} and for all elements x, y of $[: \mathcal{A}, \mathcal{B}, \mathcal{C}:]$ if $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$, then $f(\langle x, y\rangle)=\mathcal{F}\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$
for all values of the parameters.
Let us consider X, Y, Z. The functor $\rho^{X \times Y \times Z}$ yields a function from $:[$: the carrier of X, the carrier of Y, the carrier of $Z:]$, [: the carrier of X, the carrier of Y, the carrier of $Z::]$ into \mathbb{R} and is defined by the condition (Def. 4).
(Def. 4) Let x_{1}, y_{1} be elements of X, x_{2}, y_{2} be elements of Y, x_{3}, y_{3} be elements of Z, and x, y be elements of [: the carrier of X, the carrier of Y, the carrier of Z :]. If $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$, then $\rho^{X \times Y \times Z}(x, y)=\rho\left(x_{1}, y_{1}\right)+\rho\left(x_{2}, y_{2}\right)+\rho\left(x_{3}, y_{3}\right)$.
We now state three propositions:
(12 $)^{4}$ Let x, y be elements of : the carrier of X, the carrier of Y, the carrier of $\left.Z:\right]$. If $x=\left\langle x_{1}, x_{2}\right.$, $\left.x_{3}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$, then $\rho^{X \times Y \times Z}(x, y)=0$ iff $x=y$.
(13) Let x, y be elements of $[$: the carrier of X, the carrier of Y, the carrier of $Z:]$. If $x=\left\langle x_{1}, x_{2}\right.$, $\left.x_{3}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$, then $\rho^{X \times Y \times Z}(x, y)=\rho^{X \times Y \times Z}(y, x)$.
(14) Let x, y, z be elements of $\left[\right.$: the carrier of X, the carrier of Y, the carrier of $Z:$. If $x=\left\langle x_{1}, x_{2}\right.$, $\left.x_{3}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ and $z=\left\langle z_{1}, z_{2}, z_{3}\right\rangle$, then $\rho^{X \times Y \times Z}(x, z) \leq \rho^{X \times Y \times Z}(x, y)+\rho^{X \times Y \times Z}(y$, $z)$.

Let us consider X, Y, Z. The functor $[: X, Y, Z$:] yielding a strict non empty metric space is defined as follows:
(Def. 5) $\quad[: X, Y, Z:]=\left\langle[\right.$: the carrier of X, the carrier of Y, the carrier of $\left.Z:], \rho^{X \times Y \times Z}\right\rangle$.
Let us consider X, Y, Z and let x, y be elements of $[$: the carrier of X, the carrier of Y, the carrier of Z :]. The functor $\rho(x, y)$ yields a real number and is defined as follows:
(Def. 6) $\rho(x, y)=\rho^{X \times Y \times Z}(x, y)$.
The following proposition is true
(16行 〈: the carrier of X, the carrier of Y, the carrier of $\left.Z:], \mathrm{\rho}^{X \times Y \times Z}\right\rangle$ is a metric space.

[^1]In the sequel W denotes a non empty metric space and x_{4}, y_{4}, z_{4} denote elements of W.
The scheme LambdaMCART2 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}$ and a 8-ary functor \mathcal{F} yielding an element of \mathcal{E}, and states that:

There exists a function f from $[:: \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:],[: \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:]:]$ into \mathcal{E} such that for all elements x_{1}, y_{1} of \mathcal{A} and for all elements x_{2}, y_{2} of \mathcal{B} and for all elements x_{3}, y_{3} of \mathcal{C} and for all elements x_{4}, y_{4} of \mathcal{D} and for all elements x, y of $[: \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}:]$ if $x=$ $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$, then $f(\langle x, y\rangle)=\mathcal{F}\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{4}\right)$ for all values of the parameters.

Let us consider X, Y, Z, W. The functor $\rho^{X \times Y \times Z \times W}$ yields a function from $[:$: the carrier of X, the carrier of Y, the carrier of Z, the carrier of $W:]$, [: the carrier of X, the carrier of Y, the carrier of Z, the carrier of $W:!$ into \mathbb{R} and is defined by the condition (Def. 7).
(Def. 7) Let x_{1}, y_{1} be elements of X, x_{2}, y_{2} be elements of Y, x_{3}, y_{3} be elements of Z, x_{4}, y_{4} be elements of W, and x, y be elements of [: the carrier of X, the carrier of Y, the carrier of Z, the carrier of W :]. If $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$, then $\rho^{X \times Y \times Z \times W}(x$, $y)=\rho\left(x_{1}, y_{1}\right)+\rho\left(x_{2}, y_{2}\right)+\left(\rho\left(x_{3}, y_{3}\right)+\rho\left(x_{4}, y_{4}\right)\right)$.

Next we state three propositions:
(19 ${ }^{6}$ Let x, y be elements of $:$ the carrier of X, the carrier of Y, the carrier of Z, the carrier of $W:]$. If $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$, then $\rho^{X \times Y \times Z \times W}(x, y)=0$ iff $x=y$.
(20) Let x, y be elements of [: the carrier of X, the carrier of Y, the carrier of Z, the carrier of $W:]$. If $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$, then $\rho^{X \times Y \times Z \times W}(x, y)=\rho^{X \times Y \times Z \times W}(y, x)$.
(21) Let x, y, z be elements of [:the carrier of X, the carrier of Y, the carrier of Z, the carrier of W :]. Suppose $x=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$ and $z=\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle$. Then $\rho^{X \times Y \times Z \times W}(x, z) \leq \rho^{X \times Y \times Z \times W}(x, y)+\rho^{X \times Y \times Z \times W}(y, z)$.

Let us consider X, Y, Z, W. The functor $[: X, Y, Z, W$:] yields a strict non empty metric space and is defined as follows:
(Def. 8) $[: X, Y, Z, W:]=\langle[$ the carrier of X, the carrier of Y, the carrier of Z, the carrier of $\left.W:], \rho^{X \times Y \times Z \times W}\right\rangle$.

Let us consider X, Y, Z, W and let x, y be elements of $[$: the carrier of X, the carrier of Y, the carrier of Z, the carrier of W :]. The functor $\rho(x, y)$ yields a real number and is defined as follows:
(Def. 9) $\rho(x, y)=\rho^{X \times Y \times Z \times W}(x, y)$.
We now state the proposition
$(23)^{7}\left\langle[\right.$: the carrier of X, the carrier of Y, the carrier of Z, the carrier of $\left.W:], \rho^{X \times Y \times Z \times W}\right\rangle$ is a metric space.

References

[1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/binop_1.html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html

[^2][6] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[8] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/ Voll/mcart_1.html
[9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html

Received September 27, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ Supported by RPBP.III-24.B3.
 ${ }^{1}$ The proposition (1) has been removed.
 ${ }^{2}$ The propositions (3) and (4) have been removed.

[^1]: ${ }^{3}$ The proposition (8) has been removed.
 ${ }^{4}$ The propositions (10) and (11) have been removed.
 ${ }^{5}$ The proposition (15) has been removed.

[^2]: ${ }^{6}$ The propositions (17) and (18) have been removed.
 ${ }^{7}$ The proposition (22) has been removed.

