On Pseudometric Spaces¹

Adam Lecko Technical University of Rzeszów Mariusz Startek Technical University of Rzeszów

Summary. We introduce the equivalence classes in a pseudometric space. Next we prove that the set of the equivalence classes forms the metric space with the special metric defined in the article.

MML Identifier: METRIC_2.

WWW: http://mizar.org/JFM/Vol2/metric_2.html

The articles [5], [2], [8], [7], [4], [1], [3], and [6] provide the notation and terminology for this paper.

Let *M* be a non empty metric structure and let *x*, *y* be elements of *M*. The predicate $x \approx y$ is defined by:

(Def. 1) $\rho(x, y) = 0$.

Let *M* be a Reflexive non empty metric structure and let *x*, *y* be elements of *M*. Let us note that the predicate $x \approx y$ is reflexive.

Let M be a symmetric non empty metric structure and let x, y be elements of M. Let us note that the predicate $x \approx y$ is symmetric.

Let M be a non empty metric structure and let x be an element of M. The functor x^{\square} yielding a subset of M is defined as follows:

(Def. 2) $x^{\square} = \{y; y \text{ ranges over elements of } M: x \approx y\}.$

Let M be a non empty metric structure. A subset of M is called a \square -equivalence class of M if:

(Def. 3) There exists an element x of M such that it = x^{\square} .

Next we state a number of propositions:

- (6)¹ For every pseudo metric space *M* and for all elements *x*, *y*, *z* of *M* such that $x \approx y$ and $y \approx z$ holds $x \approx z$.
- (7) For every pseudo metric space M and for all elements x, y of M holds $y \in x^{\square}$ iff $y \approx x$.
- (8) For every pseudo metric space M and for all elements x, p, q of M such that $p \in x^{\square}$ and $q \in x^{\square}$ holds $p \approx q$.
- (9) For every pseudo metric space M and for every element x of M holds $x \in x^{\square}$.
- (10) For every pseudo metric space M and for all elements x, y of M holds $x \in y^{\square}$ iff $y \in x^{\square}$.
- (11) For every pseudo metric space M and for all elements p, x, y of M such that $p \in x^{\square}$ and $x \approx y$ holds $p \in y^{\square}$.

1

¹Supported by RPBP.III-24.B3.

¹ The propositions (1)–(5) have been removed.

- (12) For every pseudo metric space M and for all elements x, y of M such that $y \in x^{\square}$ holds $x^{\square} = y^{\square}$.
- (13) For every pseudo metric space M and for all elements x, y of M holds $x^{\square} = y^{\square}$ iff $x \approx y$.
- (14) For every pseudo metric space M and for all elements x, y of M holds x^{\square} meets y^{\square} iff $x \approx y$.
- (16)² For every pseudo metric space M holds every \square -equivalence class of M is a non empty set.

Let M be a pseudo metric space. One can verify that every \square -equivalence class of M is non empty.

Next we state several propositions:

- (17) For every pseudo metric space M and for all elements x, p, q of M such that $p \in x^{\square}$ and $q \in x^{\square}$ holds $\rho(p,q) = 0$.
- (18) Let M be a Reflexive discernible non empty metric structure and x, y be elements of M. Then $x \approx y$ if and only if x = y.
- (19) For every non empty metric space M and for all elements x, y of M holds $y \in x^{\square}$ iff y = x.
- (20) For every non empty metric space M and for every element x of M holds $x^{\square} = \{x\}$.
- (21) Let M be a non empty metric space and V be a subset of M. Then V is a \square -equivalence class of M if and only if there exists an element x of M such that $V = \{x\}$.

Let M be a non empty metric structure. The functor M^{\square} yields a set and is defined by:

(Def. 4) $M^{\square} = \{s; s \text{ ranges over elements of } 2^{\text{the carrier of } M} : \bigvee_{x:\text{element of } M} x^{\square} = s\}.$

Let M be a non empty metric structure. One can check that M^{\square} is non empty. In the sequel V is a set.

We now state several propositions:

- (23)³ For every non empty metric structure M holds $V \in M^{\square}$ iff there exists an element x of M such that $V = x^{\square}$.
- (24) For every non empty metric structure M and for every element x of M holds $x^{\square} \in M^{\square}$.
- (26)⁴ For every non empty metric structure M holds $V \in M^{\square}$ iff V is a \square -equivalence class of M.
- (27) For every non empty metric space M and for every element x of M holds $\{x\} \in M^{\square}$.
- (28) For every non empty metric space M holds $V \in M^{\square}$ iff there exists an element x of M such that $V = \{x\}$.
- (29) Let M be a pseudo metric space, V, Q be elements of M^{\square} , and p_1 , p_2 , q_1 , q_2 be elements of M. If $p_1 \in V$ and $q_1 \in Q$ and $p_2 \in V$ and $q_2 \in Q$, then $\rho(p_1, q_1) = \rho(p_2, q_2)$.

Let M be a non empty metric structure, let V, Q be elements of M^{\square} , and let v be an element of \mathbb{R} . We say that the distance between V and Q is v if and only if:

(Def. 5) For all elements p, q of M such that $p \in V$ and $q \in Q$ holds $\rho(p,q) = v$.

Next we state two propositions:

(31)⁵ Let M be a pseudo metric space, V, Q be elements of M^{\square} , and v be an element of \mathbb{R} . Then the distance between V and Q is v if and only if there exist elements p, q of M such that $p \in V$ and $q \in Q$ and $\rho(p,q) = v$.

² The proposition (15) has been removed.

³ The proposition (22) has been removed.

⁴ The proposition (25) has been removed.

⁵ The proposition (30) has been removed.

(32) Let M be a pseudo metric space, V, Q be elements of M^{\square} , and v be an element of \mathbb{R} . Then the distance between V and Q is v if and only if the distance between Q and V is v.

Let M be a non empty metric structure and let V, Q be elements of M^{\square} . The functor $\rho^{\circ}(V,Q)$ yields a subset of \mathbb{R} and is defined by:

(Def. 6) $\rho^{\circ}(V,Q) = \{v; v \text{ ranges over elements of } \mathbb{R}: \text{ the distance between } V \text{ and } Q \text{ is } v\}.$

Next we state the proposition

(34)⁶ Let M be a pseudo metric space, V, Q be elements of M^{\square} , and v be an element of \mathbb{R} . Then $v \in \rho^{\circ}(V, Q)$ if and only if the distance between V and Q is v.

Let M be a non empty metric structure and let v be an element of \mathbb{R} . The functor $\rho_M^{\square - 1}(v)$ yielding a subset of $[:M^{\square},M^{\square}:]$ is defined by the condition (Def. 7).

(Def. 7) $\rho_M^{\square - 1}(v) = \{W; W \text{ ranges over elements of } [:M^{\square}, M^{\square}:]: \bigvee_{V,Q: \text{element of } M^{\square}} (W = \langle V, Q \rangle \land \text{the distance between } V \text{ and } Q \text{ is } v)\}.$

Next we state the proposition

(36)⁷ Let M be a pseudo metric space, v be an element of \mathbb{R} , and W be an element of $[:M^{\square}, M^{\square}:]$. Then $W \in \rho_M^{\square - 1}(v)$ if and only if there exist elements V, Q of M^{\square} such that $W = \langle V, Q \rangle$ and the distance between V and Q is v.

Let M be a non empty metric structure. The functor $\rho^{\circ}(M^{\square}, M^{\square})$ yields a subset of $\mathbb R$ and is defined by:

(Def. 8) $\rho^{\circ}(M^{\square}, M^{\square}) = \{v; v \text{ ranges over elements of } \mathbb{R}: \bigvee_{V,Q: \text{element of } M^{\square}} \text{ the distance between } V \text{ and } Q \text{ is } v\}.$

Next we state the proposition

(38)⁸ Let M be a pseudo metric space and v be an element of \mathbb{R} . Then $v \in \rho^{\circ}(M^{\square}, M^{\square})$ if and only if there exist elements V, Q of M^{\square} such that the distance between V and Q is v.

Let M be a non empty metric structure. The functor $\text{dom}_1 \, \rho_M^{\square}$ yielding a subset of M^{\square} is defined by the condition (Def. 9).

(Def. 9) $\operatorname{dom}_1 \rho_M^{\square} = \{V; V \text{ ranges over elements of } M^{\square} : \bigvee_{Q : \text{element of } M^{\square}} \bigvee_{v : \text{element of } \mathbb{R}} \text{ the distance between } V \text{ and } Q \text{ is } v\}.$

Next we state the proposition

(40)⁹ Let M be a pseudo metric space and V be an element of M^{\square} . Then $V \in \text{dom}_1 \, \rho_M^{\square}$ if and only if there exists an element Q of M^{\square} and there exists an element v of \mathbb{R} such that the distance between V and Q is v.

Let M be a non empty metric structure. The functor $\operatorname{dom}_2 \rho_M^{\square}$ yields a subset of M^{\square} and is defined by the condition (Def. 10).

(Def. 10) $\operatorname{dom}_2 \rho_M^{\square} = \{Q; Q \text{ ranges over elements of } M^{\square} \colon \bigvee_{V : \text{element of } M^{\square}} \bigvee_{v : \text{element of } R} \text{ the distance between } V \text{ and } Q \text{ is } v \}.$

The following proposition is true

⁶ The proposition (33) has been removed.

⁷ The proposition (35) has been removed.

⁸ The proposition (37) has been removed.

⁹ The proposition (39) has been removed.

(42)¹⁰ Let M be a pseudo metric space and Q be an element of M^{\square} . Then $Q \in \text{dom}_2 \, \rho_M^{\square}$ if and only if there exists an element V of M^{\square} and there exists an element v of \mathbb{R} such that the distance between V and Q is v.

Let M be a non empty metric structure. The functor dom ρ_M^{\square} yielding a subset of $[:M^{\square},M^{\square}:]$ is defined by the condition (Def. 11).

(Def. 11) $\operatorname{dom} \rho_M^{\square} = \{V_1; V_1 \text{ ranges over elements of } [:M^{\square}, M^{\square} :]: \bigvee_{V,Q: \text{ element of } M^{\square}} \bigvee_{v: \text{ element of } \mathbb{R}} (V_1 = \langle V, Q \rangle \wedge \text{ the distance between } V \text{ and } Q \text{ is } v) \}.$

The following proposition is true

(44)¹¹ Let M be a pseudo metric space and V_1 be an element of $[:M^{\square}, M^{\square}:]$. Then $V_1 \in \text{dom } \rho_M^{\square}$ if and only if there exist elements V, Q of M^{\square} and there exists an element v of \mathbb{R} such that $V_1 = \langle V, Q \rangle$ and the distance between V and Q is v.

Let M be a non empty metric structure. The functor graph ρ_M^{\square} yields a subset of $[:M^{\square},M^{\square},\mathbb{R}:]$ and is defined by the condition (Def. 12).

(Def. 12) graph $\rho_M^{\square} = \{V_2; V_2 \text{ ranges over elements of } [:M^{\square}, M^{\square}, \mathbb{R} :] : \bigvee_{V,Q: \text{ element of } M^{\square}} \bigvee_{v: \text{ element of } \mathbb{R}} (V_2 = \langle V, Q, v \rangle \land \text{ the distance between } V \text{ and } Q \text{ is } v) \}.$

We now state several propositions:

- (46)¹² Let M be a pseudo metric space and V_2 be an element of $[:M^{\square}, M^{\square}, \mathbb{R}:]$. Then $V_2 \in \operatorname{graph} \rho_M^{\square}$ if and only if there exist elements V, Q of M^{\square} and there exists an element v of \mathbb{R} such that $V_2 = \langle V, Q, v \rangle$ and the distance between V and Q is v.
- (47) For every pseudo metric space M holds $\operatorname{dom}_1 \rho_M^{\square} = \operatorname{dom}_2 \rho_M^{\square}$.
- (48) For every pseudo metric space M holds graph $\rho_M^{\square} \subseteq [: \text{dom}_1 \rho_M^{\square}, \text{dom}_2 \rho_M^{\square}, \rho^{\circ}(M^{\square}, M^{\square}):]$.
- (50)¹³ Let M be a pseudo metric space, V, Q be elements of M^{\square} , and v_1 , v_2 be elements of \mathbb{R} . Suppose the distance between V and Q is v_1 and the distance between V and Q is v_2 . Then $v_1 = v_2$.
- $(52)^{14}$ Let M be a pseudo metric space and V, Q be elements of M^{\square} . Then there exists an element v of \mathbb{R} such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor ρ_M^{\square} yields a function from $[:M^{\square},M^{\square}:]$ into \mathbb{R} and is defined as follows:

(Def. 13) For all elements V, Q of M^{\square} and for all elements p, q of M such that $p \in V$ and $q \in Q$ holds $\rho_M^{\square}(V,Q) = \rho(p,q)$.

The following three propositions are true:

- (54)¹⁵ For every pseudo metric space M and for all elements V, Q of M^{\square} holds $\rho_M^{\square}(V,Q) = 0$ iff V = Q.
- (55) For every pseudo metric space M and for all elements V, Q of M^{\square} holds $\rho_M^{\square}(V,Q) = \rho_M^{\square}(Q,V)$.
- (56) For every pseudo metric space M and for all elements V, Q, W of M^{\square} holds $\rho_M^{\square}(V,W) \le \rho_M^{\square}(V,Q) + \rho_M^{\square}(Q,W)$.

Let M be a pseudo metric space. The functor $M_{/\square}$ yielding a metric space is defined by:

(Def. 14) $M_{/\square} = \langle M^{\square}, \rho_M^{\square} \rangle$.

Let M be a pseudo metric space. Note that $M_{/\square}$ is strict and non empty.

¹⁰ The proposition (41) has been removed.

¹¹ The proposition (43) has been removed.

¹² The proposition (45) has been removed.

¹³ The proposition (49) has been removed.

The proposition (49) has been removed.

14 The proposition (51) has been removed.

¹⁵ The proposition (53) has been removed.

REFERENCES

- [1] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [2] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [3] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/metric_1.html.
- [4] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain 1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart_1.html.
- [7] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received September 28, 1990

Published January 2, 2004