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Summary. In this paper we define the metric spaces. Two examples of metric spaces
are given. We define the discrete metric and the metric on the real axis. Moreover the open
ball, the close ball and the sphere in metric spaces are introduced. We also prove some theo-
rems concerning these concepts.
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The articles [9], [5], [11], [1], [10], [6], [3], [4], [2], [8], [12], and [7] provide the notation and
terminology for this paper.

We introduce metric structures which are extensions of 1-sorted structure and are systems
〈 a carrier, a distance〉,

where the carrier is a set and the distance is a function from[: the carrier, the carrier :] into R.
One can check that there exists a metric structure which is non empty and strict.
Let A, B be sets, letf be a partial function from[:A, B:] to R, let a be an element ofA, and letb

be an element ofB. Then f (a, b) is a real number.
Let M be a metric structure and leta, b be elements ofM. The functorρ(a,b) yields a real

number and is defined by:

(Def. 1) ρ(a,b) = (the distance ofM)(a, b).

The function{[ /0, /0]} 7→ 0 from [:{ /0}, { /0} :] into R is defined as follows:

(Def. 2) {[ /0, /0]} 7→ 0 = [:{ /0}, { /0} :] 7−→ 0.

Let A be a set and letf be a partial function from[:A, A:] to R. We say thatf is Reflexive if and
only if:

(Def. 3) For every elementa of A holds f (a, a) = 0.

We say thatf is discernible if and only if:

(Def. 4) For all elementsa, b of A such thatf (a, b) = 0 holdsa = b.

We say thatf is symmetric if and only if:

(Def. 5) For all elementsa, b of A holds f (a, b) = f (b, a).
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We say thatf is triangle if and only if:

(Def. 6) For all elementsa, b, c of A holds f (a, c)≤ f (a, b)+ f (b, c).

Let M be a metric structure. We say thatM is Reflexive if and only if:

(Def. 7) The distance ofM is Reflexive.

We say thatM is discernible if and only if:

(Def. 8) The distance ofM is discernible.

We say thatM is symmetric if and only if:

(Def. 9) The distance ofM is symmetric.

We say thatM is triangle if and only if:

(Def. 10) The distance ofM is triangle.

Let us observe that there exists a metric structure which is strict, Reflexive, discernible, sym-
metric, triangle, and non empty.

A metric space is a Reflexive discernible symmetric triangle metric structure.
Next we state four propositions:

(1) For every metric structureM holds for every elementa of M holdsρ(a,a) = 0 iff M is
Reflexive.

(2) Let M be a metric structure. Then for all elementsa, b of M such thatρ(a,b) = 0 holds
a = b if and only if M is discernible.

(3) For every metric structureM holds for all elementsa, b of M holdsρ(a,b) = ρ(b,a) iff M
is symmetric.

(4) For every metric structureM holds for all elementsa, b, c of M holdsρ(a,c) ≤ ρ(a,b)+
ρ(b,c) iff M is triangle.

Let M be a symmetric metric structure and leta, b be elements ofM. Let us note that the functor
ρ(a,b) is commutative.

We now state two propositions:

(5) For every symmetric triangle Reflexive metric structureM and for all elementsa, b of M
holds 0≤ ρ(a,b).

(6) LetM be a metric structure. Suppose that for all elementsa, b, c of M holdsρ(a,b) = 0 iff
a = b andρ(a,b) = ρ(b,a) andρ(a,c)≤ ρ(a,b)+ρ(b,c). ThenM is a metric space.

Let A be a set. The discrete metric ofA yields a function from[:A, A:] into R and is defined by
the condition (Def. 11).

(Def. 11) Letx, y be elements ofA. Then

(i) (the discrete metric ofA)(x, x) = 0, and

(ii) if x 6= y, then (the discrete metric ofA)(x, y) = 1.

Let A be a set. The discrete space onA yields a strict metric structure and is defined by:

(Def. 12) The discrete space onA = 〈A, the discrete metric ofA〉.

Let A be a non empty set. Note that the discrete space onA is non empty.
Let A be a set. Note that the discrete space onA is Reflexive, discernible, symmetric, and

triangle.
The functionρR from [:R, R :] into R is defined as follows:
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(Def. 13) For all elementsx, y of R holdsρR (x, y) = |x−y|.

Next we state three propositions:

(9)1 For all elementsx, y of R holdsρR (x, y) = 0 iff x = y.

(10) For all elementsx, y of R holdsρR (x, y) = ρR (y, x).

(11) For all elementsx, y, z of R holdsρR (x, y)≤ ρR (x, z)+ρR (z, y).

The strict metric structure the metric space of real numbers is defined as follows:

(Def. 14) The metric space of real numbers= 〈R,ρR〉.

One can check that the metric space of real numbers is non empty.
Let us note that the metric space of real numbers is Reflexive, discernible, symmetric, and

triangle.
Let M be a metric structure, letp be an element ofM, and letr be a real number. The functor

Ball(p, r) yields a subset ofM and is defined by:

(Def. 15)(i) There exists a non empty metric structureM′ and there exists an elementp′ of M′ such
thatM′ = M andp′ = p and Ball(p, r) = {q;q ranges over elements ofM′: ρ(p′,q) < r} if M
is non empty,

(ii) Ball(p, r) is empty, otherwise.

Let M be a metric structure, letp be an element ofM, and letr be a real number. The functor
Ball(p, r) yields a subset ofM and is defined by:

(Def. 16)(i) There exists a non empty metric structureM′ and there exists an elementp′ of M′ such
thatM′ = M andp′ = p andBall(p, r) = {q;q ranges over elements ofM′: ρ(p′,q)≤ r} if M
is non empty,

(ii) Ball(p, r) is empty, otherwise.

Let M be a metric structure, letp be an element ofM, and letr be a real number. The functor
Sphere(p, r) yields a subset ofM and is defined by:

(Def. 17)(i) There exists a non empty metric structureM′ and there exists an elementp′ of M′ such
thatM′ = M andp′ = p and Sphere(p, r) = {q;q ranges over elements ofM′: ρ(p′,q) = r} if
M is non empty,

(ii) Sphere(p, r) is empty, otherwise.

In the sequelr denotes a real number.
We now state several propositions:

(12) For every metric structureM and for all elementsp, x of M holdsx∈Ball(p, r) iff M is non
empty andρ(p,x) < r.

(13) For every metric structureM and for all elementsp, x of M holdsx∈Ball(p, r) iff M is non
empty andρ(p,x)≤ r.

(14) For every metric structureM and for all elementsp, x of M holdsx∈ Sphere(p, r) iff M is
non empty andρ(p,x) = r.

(15) For every metric structureM and for every elementp of M holds Ball(p, r)⊆ Ball(p, r).

(16) For every metric structureM and for every elementp of M holds Sphere(p, r)⊆ Ball(p, r).

(17) For every metric structureM and for every elementp of M holds Sphere(p, r)∪Ball(p, r) =
Ball(p, r).

1 The propositions (7) and (8) have been removed.
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(18) For every non empty metric structureM and for every elementp of M holds Ball(p, r) =
{q;q ranges over elements ofM: ρ(p,q) < r}.

(19) For every non empty metric structureM and for every elementp of M holdsBall(p, r) =
{q;q ranges over elements ofM: ρ(p,q)≤ r}.

(20) For every non empty metric structureM and for every elementp of M holds Sphere(p, r) =
{q;q ranges over elements ofM: ρ(p,q) = r}.
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