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Summary. In this article we prove the measurablility of some extended real valued
functions which aref +g, f –g and so on. Moreover, we will define the simple function which
are defined on the sigma field. It will play an important role for the Lebesgue integral theory.
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The articles [20], [22], [1], [21], [17], [23], [11], [2], [18], [3], [4], [5], [10], [19], [6], [7], [8], [9],
[12], [13], [14], [15], and [16] provide the notation and terminology for this paper.

1. FINITE VALUED FUNCTION

For simplicity, we follow the rules:X denotes a non empty set,x denotes an element ofX, f , g
denote partial functions fromX to R, Sdenotes aσ-field of subsets ofX, F denotes a function from
Q into S, p denotes a rational number,r denotes a real number,n, mdenote natural numbers, andA,
B denote elements ofS.

Let us considerX and let us considerf . We say thatf is finite if and only if:

(Def. 1) For everyx such thatx∈ dom f holds| f (x)|< +∞.

We now state three propositions:

(1) f = 1 f .

(2) For all f , g, A such thatf is finite or g is finite holds dom( f + g) = dom f ∩ domg and
dom( f −g) = dom f ∩domg.

(3) Let given f , g, F , r, A. Supposef is finite andg is finite and for everyp holdsF(p) =
A∩LE-dom( f ,R(p))∩(A∩LE-dom(g,R(r− p))). ThenA∩LE-dom( f +g,R(r)) =

⋃
rngF.

2. MEASURABILITY OF f +g AND f −g

We now state several propositions:

(4) There exists a functionF from N into Q such thatF is one-to-one and domF = N and
rngF = Q.

(5) Let X, Y, Z be non empty sets andF be a function fromX into Z. If X ≈ Y, then there
exists a functionG from Y into Z such that rngF = rngG.
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(6) Let givenS, f , g, A. Supposef is measurable onA and g is measurable onA. Then
there exists a functionF from Q into Ssuch that for every rational numberp holdsF(p) =
A∩LE-dom( f ,R(p))∩ (A∩LE-dom(g,R(r− p))).

(7) Let given f , g, A. Supposef is finite andg is finite and f is measurable onA andg is
measurable onA. Then f +g is measurable onA.

(9)1 For every non empty setC and for all partial functionsf1, f2 from C to R holds f1− f2 =
f1 +− f2.

(10) For every real numberr holdsR(−r) =−R(r).

(11) For every non empty setC and for every partial functionf fromC to R holds− f = (−1) f .

(12) LetC be a non empty set,f be a partial function fromC to R, andr be a real number. Iff
is finite, thenr f is finite.

(13) Let given f , g, A. Supposef is finite andg is finite and f is measurable onA andg is
measurable onA andA⊆ domg. Then f −g is measurable onA.

3. DEFINITIONS OFEXTENDED REAL VALUED FUNCTIONS MAX+( f ) AND MAX −( f ) AND

THEIR BASIC PROPERTIES

LetC be a non empty set and letf be a partial function fromC to R. The functor max+( f ) yielding
a partial function fromC to R is defined by:

(Def. 2) dommax+( f ) = dom f and for every elementx of C such thatx ∈ dommax+( f ) holds
(max+( f ))(x) = max( f (x),0R).

The functor max−( f ) yields a partial function fromC to R and is defined as follows:

(Def. 3) dommax−( f ) = dom f and for every elementx of C such thatx ∈ dommax−( f ) holds
(max−( f ))(x) = max(− f (x),0R).

One can prove the following propositions:

(14) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f , then 0R ≤ (max+( f ))(x).

(15) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f , then 0R ≤ (max−( f ))(x).

(16) For every non empty setC and for every partial functionf from C to R holds max−( f ) =
max+(− f ).

(17) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f and 0R < (max+( f ))(x), then(max−( f ))(x) = 0R.

(18) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f and 0R < (max−( f ))(x), then(max+( f ))(x) = 0R.

(19) For every non empty setC and for every partial functionf from C to R holds domf =
dom(max+( f )−max−( f )) and domf = dom(max+( f )+max−( f )).

(20) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f , then(max+( f ))(x) = f (x) or (max+( f ))(x) = 0R but (max−( f ))(x) =− f (x) or
(max−( f ))(x) = 0R.

(21) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f and(max+( f ))(x) = f (x), then(max−( f ))(x) = 0R.

1 The proposition (8) has been removed.
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(22) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f and(max+( f ))(x) = 0R, then(max−( f ))(x) =− f (x).

(23) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f and(max−( f ))(x) =− f (x), then(max+( f ))(x) = 0R.

(24) LetC be a non empty set,f be a partial function fromC to R, andx be an element ofC. If
x∈ dom f and(max−( f ))(x) = 0R, then(max+( f ))(x) = f (x).

(25) For every non empty setC and for every partial functionf from C to R holds f =
max+( f )−max−( f ).

(26) For every non empty setC and for every partial functionf from C to R holds | f | =
max+( f )+max−( f ).

4. MEASURABILITY OF MAX +( f ), MAX−( f ) AND | f |

Next we state three propositions:

(27) If f is measurable onA, then max+( f ) is measurable onA.

(28) If f is measurable onA andA⊆ dom f , then max−( f ) is measurable onA.

(29) For all f , A such thatf is measurable onA andA⊆ dom f holds| f | is measurable onA.

5. DEFINITION AND MEASURABILITY OF CHARACTERISTIC FUNCTION

Next we state the proposition

(30) For all setsA, X holds rng(χA,X)⊆ {0R,1}.

Let A, X be sets. ThenχA,X is a partial function fromX to R.
One can prove the following two propositions:

(31) χA,X is finite.

(32) χA,X is measurable onB.

6. DEFINITION AND MEASURABILITY OF SIMPLE FUNCTION

Let X be a set and letS be aσ-field of subsets ofX. Note that there exists a finite sequence of
elements ofSwhich is disjoint valued.

Let X be a set and letSbe aσ-field of subsets ofX. A finite sequence of separated subsets ofS
is a disjoint valued finite sequence of elements ofS.

We now state two propositions:

(33) SupposeF is a finite sequence of separated subsets ofS. Then there exists a sequenceG of
separated subsets ofSsuch that

⋃
rngF =

⋃
rngG and for everyn such thatn∈ domF holds

F(n) = G(n) and for everym such thatm /∈ domF holdsG(m) = /0.

(34) If F is a finite sequence of separated subsets ofS, then
⋃

rngF ∈ S.

Let X be a non empty set, letSbe aσ-field of subsets ofX, and let f be a partial function from
X to R. We say thatf is simple function inS if and only if the conditions (Def. 5) are satisfied.

(Def. 5)2(i) f is finite, and

(ii) there exists a finite sequenceF of separated subsets ofS such that domf =
⋃

rngF and
for every natural numbern and for all elementsx, y of X such thatn∈ domF andx∈ F(n)
andy∈ F(n) holds f (x) = f (y).

2 The definition (Def. 4) has been removed.
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One can prove the following propositions:

(35) If f is finite, then rngf is a subset ofR.

(36) SupposeF is a finite sequence of separated subsets ofS. Let givenn. ThenF�Segn is a
finite sequence of separated subsets ofS.

(37) If f is simple function inS, then f is measurable onA.
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