Some Properties of the Intervals

Józef Białas Łódź University

MML Identifier: MEASURE6. WWW: http://mizar.org/JFM/Vol6/measure6.html

The articles [8], [7], [10], [1], [9], [11], [5], [6], [2], [3], and [4] provide the notation and terminology for this paper.

The following propositions are true:

- (1) There exists a function F from \mathbb{N} into $[:\mathbb{N}, \mathbb{N}:]$ such that F is one-to-one and dom $F = \mathbb{N}$ and rng $F = [:\mathbb{N}, \mathbb{N}:]$.
- (2) For every function *F* from \mathbb{N} into $\overline{\mathbb{R}}$ such that *F* is non-negative holds $0_{\overline{\mathbb{R}}} \leq \sum F$.
- (3) Let *F* be a function from \mathbb{N} into $\overline{\mathbb{R}}$ and *x* be an extended real number. Suppose there exists a natural number *n* such that $x \leq F(n)$ and *F* is non-negative. Then $x \leq \sum F$.
- (8)¹ For all extended real numbers x, y such that x is a real number holds (y-x) + x = y and (y+x) x = y.
- (10)² For all extended real numbers x, y, z such that $z \in \mathbb{R}$ and y < x holds (z+x) (z+y) = x y.
- (11) For all extended real numbers x, y, z such that $z \in \mathbb{R}$ and $x \le y$ holds $z + x \le z + y$ and $x + z \le y + z$ and $x z \le y z$.
- (12) For all extended real numbers x, y, z such that $z \in \mathbb{R}$ and x < y holds z + x < z + y and x + z < y + z and x z < y z.

Let *x* be a real number. The functor $\overline{\mathbb{R}}(x)$ yielding an extended real number is defined as follows:

(Def. 1) $\overline{\mathbb{R}}(x) = x$.

We now state a number of propositions:

- (13) For all real numbers x, y holds $x \le y$ iff $\overline{\mathbb{R}}(x) \le \overline{\mathbb{R}}(y)$.
- (14) For all real numbers x, y holds x < y iff $\overline{\mathbb{R}}(x) < \overline{\mathbb{R}}(y)$.
- (15) For all extended real numbers x, y, z such that x < y and y < z holds y is a real number.
- (16) Let x, y, z be extended real numbers. Suppose x is a real number and z is a real number and $x \le y$ and $y \le z$. Then y is a real number.
- (17) For all extended real numbers x, y, z such that x is a real number and $x \le y$ and y < z holds y is a real number.

¹ The propositions (4)–(7) have been removed.

 $^{^{2}}$ The proposition (9) has been removed.

- (18) For all extended real numbers x, y, z such that x < y and $y \le z$ and z is a real number holds y is a real number.
- (19) For all extended real numbers *x*, *y* such that $0_{\overline{\mathbb{R}}} < x$ and x < y holds $0_{\overline{\mathbb{R}}} < y x$.
- (20) For all extended real numbers x, y, z such that $0_{\mathbb{R}} \le x$ and $0_{\mathbb{R}} \le z$ and z + x < y holds z < y x.
- (21) For every extended real number *x* holds $x 0_{\overline{\mathbb{R}}} = x$.
- (22) For all extended real numbers *x*, *y*, *z* such that $0_{\overline{\mathbb{R}}} \le x$ and $0_{\overline{\mathbb{R}}} \le z$ and z + x < y holds $z \le y$.
- (23) For every extended real number x such that $0_{\mathbb{R}} < x$ there exists an extended real number y such that $0_{\mathbb{R}} < y$ and y < x.
- (24) Let *x*, *z* be extended real numbers. Suppose $0_{\overline{\mathbb{R}}} < x$ and x < z. Then there exists an extended real number *y* such that $0_{\overline{\mathbb{R}}} < y$ and x + y < z and $y \in \mathbb{R}$.
- (25) Let *x*, *z* be extended real numbers. Suppose $0_{\mathbb{R}} \le x$ and x < z. Then there exists an extended real number *y* such that $0_{\mathbb{R}} < y$ and x + y < z and $y \in \mathbb{R}$.
- (26) For every extended real number x such that $0_{\overline{\mathbb{R}}} < x$ there exists an extended real number y such that $0_{\overline{\mathbb{R}}} < y$ and y + y < x.

Let *x* be an extended real number. Let us assume that $0_{\overline{\mathbb{R}}} < x$. The functor Seg *x* yields a non empty subset of $\overline{\mathbb{R}}$ and is defined by:

(Def. 2) For every extended real number *y* holds $y \in \text{Seg } x$ iff $0_{\mathbb{R}} < y$ and y + y < x.

Let x be an extended real number. The functor len x yields an extended real number and is defined by:

(Def. 3) $\operatorname{len} x = \sup \operatorname{Seg} x$.

Next we state several propositions:

- (27) For every extended real number *x* such that $0_{\overline{\mathbb{R}}} < x$ holds $0_{\overline{\mathbb{R}}} < \text{len } x$.
- (28) For every extended real number *x* such that $0_{\mathbb{R}} < x$ holds len $x \leq x$.
- (29) For every extended real number x such that $0_{\mathbb{R}} < x$ and $x < +\infty$ holds len x is a real number.
- (30) For every extended real number *x* such that $0_{\mathbb{R}} < x$ holds $\operatorname{len} x + \operatorname{len} x \leq x$.
- (31) Let e_1 be an extended real number. Suppose $0_{\overline{\mathbb{R}}} < e_1$. Then there exists a function *F* from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every natural number *n* holds $0_{\overline{\mathbb{R}}} < F(n)$ and $\sum F < e_1$.
- (32) Let e_1 be an extended real number and X be a non empty subset of \mathbb{R} . Suppose $0_{\overline{\mathbb{R}}} < e_1$ and $\inf X$ is a real number. Then there exists an extended real number x such that $x \in X$ and $x < \inf X + e_1$.
- (33) Let e_1 be an extended real number and X be a non empty subset of \mathbb{R} . Suppose $0_{\mathbb{R}} < e_1$ and sup X is a real number. Then there exists an extended real number x such that $x \in X$ and $\sup X e_1 < x$.
- (34) Let *F* be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Suppose *F* is non-negative and $\sum F < +\infty$. Let *n* be a natural number. Then $F(n) \in \mathbb{R}$.

 $-\infty$ is an extended real number. Then $+\infty$ is an extended real number. One can prove the following propositions:

(35) \mathbb{R} is an interval and $\mathbb{R} =]-\infty, +\infty[$ and $\mathbb{R} = [-\infty, +\infty]$ and $\mathbb{R} = [-\infty, +\infty[$ and $\mathbb{R} =]-\infty, +\infty]$.

- (36) For all extended real numbers a, b such that $b = -\infty$ holds $]a, b[=\emptyset$ and $[a, b] = \emptyset$ and $[a, b] = \emptyset$.
- (37) For all extended real numbers a, b such that $a = +\infty$ holds $]a,b[=\emptyset$ and $[a,b] = \emptyset$ and $[a,b] = \emptyset$.
- (38) Let *A* be an interval, *a*, *b* be extended real numbers, and *c*, *d*, *e* be real numbers. If A =]a, b[and $c \in A$ and $d \in A$ and $c \leq e$ and $e \leq d$, then $e \in A$.
- (39) Let *A* be an interval, *a*, *b* be extended real numbers, and *c*, *d*, *e* be real numbers. If A = [a, b] and $c \in A$ and $d \in A$ and $c \leq e$ and $e \leq d$, then $e \in A$.
- (40) Let *A* be an interval, *a*, *b* be extended real numbers, and *c*, *d*, *e* be real numbers. If A =]a, b] and $c \in A$ and $d \in A$ and $c \leq e$ and $e \leq d$, then $e \in A$.
- (41) Let *A* be an interval, *a*, *b* be extended real numbers, and *c*, *d*, *e* be real numbers. If A = [a, b[and $c \in A$ and $d \in A$ and $c \leq e$ and $e \leq d$, then $e \in A$.
- (42) Let A be a non empty subset of \mathbb{R} and m, M be extended real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
- (i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
- (ii) $m \notin A$, and
- (iii) $M \notin A$.

Then A = [m, M[.

- (43) Let A be a non empty subset of $\overline{\mathbb{R}}$ and m, M be extended real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
- (i) for all real numbers *c*, *d* such that $c \in A$ and $d \in A$ and for every real number *e* such that $c \leq e$ and $e \leq d$ holds $e \in A$,
- (ii) $m \in A$,
- (iii) $M \in A$, and
- (iv) $A \subseteq \mathbb{R}$.

Then A = [m, M].

- (44) Let A be a non empty subset of $\overline{\mathbb{R}}$ and m, M be extended real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
- (i) for all real numbers *c*, *d* such that $c \in A$ and $d \in A$ and for every real number *e* such that $c \leq e$ and $e \leq d$ holds $e \in A$,
- (ii) $m \in A$,
- (iii) $M \notin A$, and
- (iv) $A \subseteq \mathbb{R}$.

Then A = [m, M].

- (45) Let A be a non empty subset of \mathbb{R} and m, M be extended real numbers. Suppose $m = \inf A$ and $M = \sup A$. Suppose that
- (i) for all real numbers *c*, *d* such that $c \in A$ and $d \in A$ and for every real number *e* such that $c \leq e$ and $e \leq d$ holds $e \in A$,
- (ii) $m \notin A$,
- (iii) $M \in A$, and
- (iv) $A \subseteq \mathbb{R}$.

Then A = [m, M].

- (46) Let A be a subset of \mathbb{R} . Then A is an interval if and only if for all real numbers a, b such that $a \in A$ and $b \in A$ and for every real number c such that $a \leq c$ and $c \leq b$ holds $c \in A$.
- (47) For all intervals A, B such that A meets B holds $A \cup B$ is an interval.

Let *A* be an interval. Let us assume that $A \neq \emptyset$. The functor inf*A* yields an extended real number and is defined as follows:

(Def. 4) There exists an extended real number b such that $\inf A \le b$ but $A = [\inf A, b]$ or $A = [\inf A, b]$ or $A = [\inf A, b]$.

Let *A* be an interval. Let us assume that $A \neq \emptyset$. The functor sup*A* yields an extended real number and is defined as follows:

(Def. 5) There exists an extended real number a such that $a \le \sup A$ but $A =]a, \sup A[$ or $A =]a, \sup A]$ or $A = [a, \sup A]$ or $A = [a, \sup A]$.

One can prove the following propositions:

- (48) For every interval A such that A is open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A = [\inf A, \sup A]$.
- (49) For every interval A such that A is closed interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A = [\inf A, \sup A]$.
- (50) For every interval A such that A is right open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A = [\inf A, \sup A]$.
- (51) For every interval A such that A is left open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A = [\inf A, \sup A]$.
- (52) For every interval A such that $A \neq \emptyset$ holds $\inf A \leq \sup A$ but $A = [\inf A, \sup A]$ or $A = [\inf A, \sup A]$ or $A = [\inf A, \sup A]$ or $A = [\inf A, \sup A]$.
- $(54)^3$ For every interval A and for every real number a such that $a \in A$ holds $\inf A \leq \overline{\mathbb{R}}(a)$ and $\overline{\mathbb{R}}(a) \leq \sup A$.
- (55) For all intervals A, B and for all real numbers a, b such that $a \in A$ and $b \in B$ holds if $\sup A \leq \inf B$, then $a \leq b$.
- (56) For every interval A and for every extended real number a such that $a \in A$ holds $\inf A \leq a$ and $a \leq \sup A$.
- (57) For every interval A such that $A \neq \emptyset$ and for every extended real number a such that $\inf A < a$ and $a < \sup A$ holds $a \in A$.
- (58) For all intervals A, B such that $\sup A = \inf B$ but $\sup A \in A$ or $\inf B \in B$ holds $A \cup B$ is an interval.

Let *A* be a subset of \mathbb{R} and let *x* be a real number. The functor x + A yielding a subset of \mathbb{R} is defined as follows:

(Def. 6) For every real number y holds $y \in x + A$ iff there exists a real number z such that $z \in A$ and y = x + z.

We now state several propositions:

- (59) For every subset A of \mathbb{R} and for every real number x holds -x + (x+A) = A.
- (60) For every real number x and for every subset A of \mathbb{R} such that $A = \mathbb{R}$ holds x + A = A.
- (61) For every real number *x* holds $x + \emptyset = \emptyset$.

³ The proposition (53) has been removed.

- (62) For every interval A and for every real number x holds A is open interval iff x + A is open interval.
- (63) For every interval A and for every real number x holds A is closed interval iff x + A is closed interval.
- (64) Let A be an interval and x be a real number. Then A is right open interval if and only if x + A is right open interval.
- (65) Let *A* be an interval and *x* be a real number. Then *A* is left open interval if and only if x + A is left open interval.
- (66) For every interval A and for every real number x holds x + A is an interval.

Let *A* be an interval and let *x* be a real number. One can check that x + A is interval. We now state the proposition

(67) For every interval A and for every real number x holds vol(A) = vol(x+A).

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_1.html.
- [3] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/supinf_2.html.
- [4] Józef Białas. Properties of the intervals of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ measure5.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received February 5, 1994

Published January 2, 2004