Properties of the Intervals of Real Numbers

Józef Białas
Łódź University

Abstract

Summary. The paper contains definitions and basic properties of the intervals of real numbers.

The article includes the text being a continuation of the paper [4]. Some theorems concerning basic properties of intervals are proved.

MML Identifier: MEASURE5.
WWW: http://mizar.org/JFM/Vol5/measure5.html

The articles [5], [6], [1], [2], and [3] provide the notation and terminology for this paper.
In this paper $x, y, a, b, a_{1}, b_{1}, a_{2}, b_{2}$ are extended real numbers.
The following four propositions are true:
(1) If $x \neq-\infty$ and $x \neq+\infty$ and $x \leq y$, then $0_{\overline{\mathbb{R}}} \leq y-x$.
(2) If $x=-\infty$ and $y=-\infty$ and $x=+\infty$ and $y=+\infty$ and $x \leq y$, then $0_{\overline{\mathbb{R}}} \leq y-x$.
(8) For all extended real numbers a, b, c such that $b \neq-\infty$ and $b \neq+\infty$ and $a=-\infty$ and $c=-\infty$ and $a=+\infty$ and $c=+\infty$ holds $(c-b)+(b-a)=c-a$.
(9) $\inf \left\{a_{1}, a_{2}\right\} \leq a_{1}$ and $\inf \left\{a_{1}, a_{2}\right\} \leq a_{2}$ and $a_{1} \leq \sup \left\{a_{1}, a_{2}\right\}$ and $a_{2} \leq \sup \left\{a_{1}, a_{2}\right\}$.

Let a, b be extended real numbers. The functor $[a, b]$ yields a subset of \mathbb{R} and is defined as follows:
(Def. 1) For every extended real number x holds $x \in[a, b]$ iff $a \leq x$ and $x \leq b$ and $x \in \mathbb{R}$.
The functor $] a, b[$ yields a subset of \mathbb{R} and is defined as follows:
(Def. 2) For every extended real number x holds $x \in] a, b[$ iff $a<x$ and $x<b$ and $x \in \mathbb{R}$.
The functor $] a, b]$ yielding a subset of \mathbb{R} is defined by:
(Def. 3) For every extended real number x holds $x \in] a, b]$ iff $a<x$ and $x \leq b$ and $x \in \mathbb{R}$.
The functor $[a, b[$ yielding a subset of \mathbb{R} is defined by:
(Def. 4) For every extended real number x holds $x \in[a, b[$ iff $a \leq x$ and $x<b$ and $x \in \mathbb{R}$.
Let I_{1} be a subset of \mathbb{R}. We say that I_{1} is open interval if and only if:
(Def. 5) There exist extended real numbers a, b such that $a \leq b$ and $\left.I_{1}=\right] a, b[$.
We say that I_{1} is closed interval if and only if:

[^0](Def. 6) There exist extended real numbers a, b such that $a \leq b$ and $I_{1}=[a, b]$.
Let us mention that there exists a subset of \mathbb{R} which is open interval and there exists a subset of \mathbb{R} which is closed interval.

Let I_{1} be a subset of \mathbb{R}. We say that I_{1} is right open interval if and only if:
(Def. 7) There exist extended real numbers a, b such that $a \leq b$ and $I_{1}=[a, b[$.
We introduce I_{1} is left closed interval as a synonym of I_{1} is right open interval.
Let I_{1} be a subset of \mathbb{R}. We say that I_{1} is left open interval if and only if:
(Def. 8) There exist extended real numbers a, b such that $a \leq b$ and $\left.\left.I_{1}=\right] a, b\right]$.
We introduce I_{1} is right closed interval as a synonym of I_{1} is left open interval.
Let us observe that there exists a subset of \mathbb{R} which is right open interval and there exists a subset of \mathbb{R} which is left open interval.

Let I_{1} be a subset of \mathbb{R}. We say that I_{1} is interval if and only if:
(Def. 9) I_{1} is open interval, closed interval, right open interval, and left open interval.
One can check that there exists a subset of \mathbb{R} which is interval.
An interval is an interval subset of \mathbb{R}.
In the sequel A, B are intervals.
One can verify the following observations:

* every subset of \mathbb{R} which is open interval is also interval,
* every subset of \mathbb{R} which is closed interval is also interval,
* every subset of \mathbb{R} which is right open interval is also interval, and
* every subset of \mathbb{R} which is left open interval is also interval.

We now state a number of propositions:
$(11)^{2}$ Let x be a set and a, b be extended real numbers. Suppose $\left.x \in\right] a, b[$ or $x \in[a, b]$ or $x \in[a, b[$ or $x \in] a, b]$. Then x is an extended real number.
(12) For all extended real numbers a, b such that $b<a$ holds $] a, b[=\emptyset$ and $[a, b]=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$.
(13) For every extended real number a holds $] a, a[=\emptyset$ and $[a, a[=\emptyset$ and $] a, a]=\emptyset$.
(14) For every extended real number a holds if $a=-\infty$ or $a=+\infty$, then $[a, a]=\emptyset$ and if $a \neq-\infty$ and $a \neq+\infty$, then $[a, a]=\{a\}$.
(15) For all extended real numbers a, b such that $b \leq a$ holds $] a, b[=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$ and $[a, b] \subseteq\{a\}$ and $[a, b] \subseteq\{b\}$.
(16) For all extended real numbers a, b, c such that $a<b$ and $b<c$ holds $b \in \mathbb{R}$.
(17) Let a, b be extended real numbers. Suppose $a<b$. Then there exists an extended real number x such that $a<x$ and $x<b$ and $x \in \mathbb{R}$.
(18) Let a, b, c be extended real numbers. Suppose $a<b$ and $a<c$. Then there exists an extended real number x such that $a<x$ and $x<b$ and $x<c$ and $x \in \mathbb{R}$.
(19) Let a, b, c be extended real numbers. Suppose $a<c$ and $b<c$. Then there exists an extended real number x such that $a<x$ and $b<x$ and $x<c$ and $x \in \mathbb{R}$.
(20) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}[$ and $x \notin] a_{2}, b_{2}[$ or $x \notin] a_{1}, b_{1}[$ and $x \in] a_{2}, b_{2}[$.

[^1](21) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}[$ and $x \notin] a_{2}, b_{2}[$ or $x \notin] a_{1}, b_{1}[$ and $x \in] a_{2}, b_{2}[$.
(22) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}\left[\right.$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(23) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}\left[\right.$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(24) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $\left.x \notin\right] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(25) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $\left.x \notin\right] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(26) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(27) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}\left[\right.$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $x \notin] a_{1}, b_{1}\left[\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(28) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $x \notin] a_{2}, b_{2}\left[\right.$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $x \in] a_{2}, b_{2}[$.
(29) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $x \notin] a_{2}, b_{2}\left[\right.$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $x \in] a_{2}, b_{2}[$.
(30) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}[$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $\left.x \notin\right] a_{1}, b_{1}[$ and $\left.x \in] a_{2}, b_{2}\right]$.
(31) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in] a_{1}, b_{1}[$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $\left.x \notin\right] a_{1}, b_{1}[$ and $\left.x \in] a_{2}, b_{2}\right]$.
(32) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}[$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(33) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $\left.x \notin\right] a_{2}, b_{2}[$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $\left.x \in\right] a_{2}, b_{2}[$.
(34) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(35) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(36) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\left[\right.\right.$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(37) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\left[\right.\right.$ or $x \notin\left[a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(38) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(39) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}\right]$.
(40) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.\left.x \in\right] a_{2}, b_{2}\right]$.
(41) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}\right]$ and $\left.\left.x \in\right] a_{2}, b_{2}\right]$.
(42) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $\left.\left.x \notin\right] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(43) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}\right]$ or $\left.\left.x \notin\right] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}\right]$.
(44) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}\left[\right.\right.$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(45) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}\left[\right.\right.$ and $x \notin\left[a_{2}, b_{2}\left[\right.\right.$ or $x \notin\left[a_{1}, b_{1}\left[\right.\right.$ and $x \in\left[a_{2}, b_{2}[\right.$.
(46) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $\left.x \in] a_{2}, b_{2}\right]$.
(47) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $x \in\left[a_{1}, b_{1}[\right.$ and $\left.x \notin] a_{2}, b_{2}\right]$ or $x \notin\left[a_{1}, b_{1}[\right.$ and $\left.x \in] a_{2}, b_{2}\right]$.
(48) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(49) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $x \notin\left[a_{2}, b_{2}[\right.$ or $\left.x \notin] a_{1}, b_{1}\right]$ and $x \in\left[a_{2}, b_{2}[\right.$.
(50) If $a_{1}<a_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $\left.\left.x \notin\right] a_{1}, b_{1}\right]$ and $\left.\left.x \in\right] a_{2}, b_{2}\right]$.
(51) If $b_{1}<b_{2}$ and if $a_{1}<b_{1}$ or $a_{2}<b_{2}$, then there exists an extended real number x such that $\left.x \in] a_{1}, b_{1}\right]$ and $\left.\left.x \notin\right] a_{2}, b_{2}\right]$ or $\left.\left.x \notin\right] a_{1}, b_{1}\right]$ and $\left.\left.x \in\right] a_{2}, b_{2}\right]$.
(52) If $a_{1}<b_{1}$ and if $\left.A=\right] a_{1}, b_{1}\left[\right.$ or $A=\left[a_{1}, b_{1}\right]$ or $A=\left[a_{1}, b_{1}[\right.$ or $\left.A=] a_{1}, b_{1}\right]$ and if $\left.A=\right] a_{2}, b_{2}[$ or $A=\left[a_{2}, b_{2}\right]$ or $A=\left[a_{2}, b_{2}[\right.$ or $\left.A=] a_{2}, b_{2}\right]$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.

Let A be an interval. The functor $\operatorname{vol}(A)$ yields an extended real number and is defined by the condition (Def. 10).
(Def. 10) There exist extended real numbers a, b such that $A=] a, b[$ or $A=[a, b]$ or $A=[a, b[$ or $A=] a, b]$ but if $a<b$, then $\operatorname{vol}(A)=b-a$ but if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.

We now state several propositions:
(53) Let A be an open interval subset of \mathbb{R} and a, b be extended real numbers such that $A=] a, b[$. Then
(i) if $a<b$, then $\operatorname{vol}(A)=b-a$, and
(ii) if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
(54) Let A be a closed interval subset of \mathbb{R} and a, b be extended real numbers such that $A=[a, b]$. Then
(i) if $a<b$, then $\operatorname{vol}(A)=b-a$, and
(ii) if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
(55) Let A be a right open interval subset of \mathbb{R} and a, b be extended real numbers such that $A=[a, b[$. Then
(i) if $a<b$, then $\operatorname{vol}(A)=b-a$, and
(ii) \quad if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
(56) Let A be a left open interval subset of \mathbb{R} and a, b be extended real numbers such that $A=] a, b]$. Then
(i) if $a<b$, then $\operatorname{vol}(A)=b-a$, and
(ii) \quad if $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
(57) Let a, b, c be extended real numbers. Suppose $a=-\infty$ and $b \in \mathbb{R}$ and $c=+\infty$ and $A=] a, b[$ or $A=] b, c[$ or $A=[a, b]$ or $A=[b, c]$ or $A=[a, b[$ or $A=[b, c[$ or $A=] a, b]$ or $A=] b, c]$. Then $\operatorname{vol}(A)=+\infty$.
(58) For all extended real numbers a, b such that $a=-\infty$ but $b=+\infty$ but $A=] a, b[$ or $A=[a, b]$ or $A=[a, b[$ or $A=] a, b]$ holds $\operatorname{vol}(A)=+\infty$.

One can verify that there exists an interval which is empty.
\emptyset is an empty interval.
One can prove the following four propositions:
$(60)^{3} \operatorname{vol}(\emptyset)=0_{\overline{\mathbb{R}}}$.
(61) If $A \subseteq B$ and $B=[a, b]$ and $b \leq a$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$ and $\operatorname{vol}(B)=0_{\overline{\mathbb{R}}}$.
(62) If $A \subseteq B$, then $\operatorname{vol}(A) \leq \operatorname{vol}(B)$.
(63) $0_{\overline{\mathbb{R}}} \leq \operatorname{vol}(A)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/supinf_1.html
[3] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/supinf_2.html
[4] Józef Białas. Properties of Caratheodor's measure. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ measure4.html
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html

Published January 2, 2004

[^2]
[^0]: ${ }^{1}$ The propositions (3)-(7) have been removed.

[^1]: ${ }^{2}$ The proposition (10) has been removed.

[^2]: ${ }^{3}$ The proposition (59) has been removed.

