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Summary. The paper contains definitions and basic properties of the intervals of real
numbers.

The article includes the text being a continuation of the paper [4]. Some theorems con-
cerning basic properties of intervals are proved.
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The articles [5], [6], [1], [2], and [3] provide the notation and terminology for this paper.
In this paperx, y, a, b, a1, b1, a2, b2 are extended real numbers.
The following four propositions are true:

(1) If x 6=−∞ andx 6= +∞ andx≤ y, then 0R ≤ y−x.

(2) If x =−∞ andy =−∞ andx = +∞ andy = +∞ andx≤ y, then 0R ≤ y−x.

(8)1 For all extended real numbersa, b, c such thatb 6= −∞ andb 6= +∞ anda = −∞ and
c =−∞ anda = +∞ andc = +∞ holds(c−b)+(b−a) = c−a.

(9) inf{a1,a2} ≤ a1 and inf{a1,a2} ≤ a2 anda1 ≤ sup{a1,a2} anda2 ≤ sup{a1,a2}.

Let a, b be extended real numbers. The functor[a,b] yields a subset ofR and is defined as
follows:

(Def. 1) For every extended real numberx holdsx∈ [a,b] iff a≤ x andx≤ b andx∈ R.

The functor]a,b[ yields a subset ofR and is defined as follows:

(Def. 2) For every extended real numberx holdsx∈ ]a,b[ iff a < x andx < b andx∈ R.

The functor]a,b] yielding a subset ofR is defined by:

(Def. 3) For every extended real numberx holdsx∈ ]a,b] iff a < x andx≤ b andx∈ R.

The functor[a,b[ yielding a subset ofR is defined by:

(Def. 4) For every extended real numberx holdsx∈ [a,b[ iff a≤ x andx < b andx∈ R.

Let I1 be a subset ofR. We say thatI1 is open interval if and only if:

(Def. 5) There exist extended real numbersa, b such thata≤ b andI1 = ]a,b[.

We say thatI1 is closed interval if and only if:

1 The propositions (3)–(7) have been removed.
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(Def. 6) There exist extended real numbersa, b such thata≤ b andI1 = [a,b].

Let us mention that there exists a subset ofR which is open interval and there exists a subset of
R which is closed interval.

Let I1 be a subset ofR. We say thatI1 is right open interval if and only if:

(Def. 7) There exist extended real numbersa, b such thata≤ b andI1 = [a,b[.

We introduceI1 is left closed interval as a synonym ofI1 is right open interval.
Let I1 be a subset ofR. We say thatI1 is left open interval if and only if:

(Def. 8) There exist extended real numbersa, b such thata≤ b andI1 = ]a,b].

We introduceI1 is right closed interval as a synonym ofI1 is left open interval.
Let us observe that there exists a subset ofR which is right open interval and there exists a

subset ofR which is left open interval.
Let I1 be a subset ofR. We say thatI1 is interval if and only if:

(Def. 9) I1 is open interval, closed interval, right open interval, and left open interval.

One can check that there exists a subset ofR which is interval.
An interval is an interval subset ofR.
In the sequelA, B are intervals.
One can verify the following observations:

∗ every subset ofR which is open interval is also interval,

∗ every subset ofR which is closed interval is also interval,

∗ every subset ofR which is right open interval is also interval, and

∗ every subset ofR which is left open interval is also interval.

We now state a number of propositions:

(11)2 Let x be a set anda, b be extended real numbers. Supposex∈ ]a,b[ or x∈ [a,b] or x∈ [a,b[
or x∈ ]a,b]. Thenx is an extended real number.

(12) For all extended real numbersa, bsuch thatb< aholds]a,b[ = /0 and[a,b] = /0 and[a,b[= /0
and]a,b] = /0.

(13) For every extended real numbera holds]a,a[ = /0 and[a,a[= /0 and]a,a] = /0.

(14) For every extended real numbera holds ifa=−∞ or a= +∞, then[a,a] = /0 and ifa 6=−∞
anda 6= +∞, then[a,a] = {a}.

(15) For all extended real numbersa, bsuch thatb≤ aholds]a,b[ = /0 and[a,b[= /0 and]a,b] = /0
and[a,b]⊆ {a} and[a,b]⊆ {b}.

(16) For all extended real numbersa, b, c such thata < b andb < c holdsb∈ R.

(17) Let a, b be extended real numbers. Supposea < b. Then there exists an extended real
numberx such thata < x andx < b andx∈ R.

(18) Let a, b, c be extended real numbers. Supposea < b and a < c. Then there exists an
extended real numberx such thata < x andx < b andx < c andx∈ R.

(19) Let a, b, c be extended real numbers. Supposea < c and b < c. Then there exists an
extended real numberx such thata < x andb < x andx < c andx∈ R.

(20) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ ]a2,b2[ or x /∈ ]a1,b1[ andx∈ ]a2,b2[.

2 The proposition (10) has been removed.
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(21) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ ]a2,b2[ or x /∈ ]a1,b1[ andx∈ ]a2,b2[.

(22) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ ]a2,b2[ or x /∈ [a1,b1] andx∈ ]a2,b2[.

(23) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ ]a2,b2[ or x /∈ [a1,b1] andx∈ ]a2,b2[.

(24) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ [a2,b2] or x /∈ ]a1,b1[ andx∈ [a2,b2].

(25) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ [a2,b2] or x /∈ ]a1,b1[ andx∈ [a2,b2].

(26) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ [a2,b2[ or x /∈ ]a1,b1[ andx∈ [a2,b2[.

(27) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ [a2,b2[ or x /∈ ]a1,b1[ andx∈ [a2,b2[.

(28) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ ]a2,b2[ or x /∈ [a1,b1[ andx∈ ]a2,b2[.

(29) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ ]a2,b2[ or x /∈ [a1,b1[ andx∈ ]a2,b2[.

(30) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ ]a2,b2] or x /∈ ]a1,b1[ andx∈ ]a2,b2].

(31) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1[ andx /∈ ]a2,b2] or x /∈ ]a1,b1[ andx∈ ]a2,b2].

(32) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ ]a2,b2[ or x /∈ ]a1,b1] andx∈ ]a2,b2[.

(33) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ ]a2,b2[ or x /∈ ]a1,b1] andx∈ ]a2,b2[.

(34) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ [a2,b2] or x /∈ [a1,b1] andx∈ [a2,b2].

(35) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ [a2,b2] or x /∈ [a1,b1] andx∈ [a2,b2].

(36) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ [a2,b2[ or x /∈ [a1,b1] andx∈ [a2,b2[.

(37) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ [a2,b2[ or x /∈ [a1,b1] andx∈ [a2,b2[.

(38) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ [a2,b2] or x /∈ [a1,b1[ andx∈ [a2,b2].

(39) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ [a2,b2] or x /∈ [a1,b1[ andx∈ [a2,b2].

(40) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ ]a2,b2] or x /∈ [a1,b1] andx∈ ]a2,b2].

(41) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1] andx /∈ ]a2,b2] or x /∈ [a1,b1] andx∈ ]a2,b2].
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(42) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ [a2,b2] or x /∈ ]a1,b1] andx∈ [a2,b2].

(43) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ [a2,b2] or x /∈ ]a1,b1] andx∈ [a2,b2].

(44) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ [a2,b2[ or x /∈ [a1,b1[ andx∈ [a2,b2[.

(45) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ [a2,b2[ or x /∈ [a1,b1[ andx∈ [a2,b2[.

(46) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ ]a2,b2] or x /∈ [a1,b1[ andx∈ ]a2,b2].

(47) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ [a1,b1[ andx /∈ ]a2,b2] or x /∈ [a1,b1[ andx∈ ]a2,b2].

(48) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ [a2,b2[ or x /∈ ]a1,b1] andx∈ [a2,b2[.

(49) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ [a2,b2[ or x /∈ ]a1,b1] andx∈ [a2,b2[.

(50) If a1 < a2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ ]a2,b2] or x /∈ ]a1,b1] andx∈ ]a2,b2].

(51) If b1 < b2 and if a1 < b1 or a2 < b2, then there exists an extended real numberx such that
x∈ ]a1,b1] andx /∈ ]a2,b2] or x /∈ ]a1,b1] andx∈ ]a2,b2].

(52) If a1 < b1 and ifA= ]a1,b1[ or A= [a1,b1] or A= [a1,b1[ or A= ]a1,b1] and ifA= ]a2,b2[
or A = [a2,b2] or A = [a2,b2[ or A = ]a2,b2], thena1 = a2 andb1 = b2.

Let A be an interval. The functor vol(A) yields an extended real number and is defined by the
condition (Def. 10).

(Def. 10) There exist extended real numbersa, b such thatA = ]a,b[ or A = [a,b] or A = [a,b[ or
A = ]a,b] but if a < b, then vol(A) = b−a but if b≤ a, then vol(A) = 0R.

We now state several propositions:

(53) LetA be an open interval subset ofR anda, b be extended real numbers such thatA= ]a,b[.
Then

(i) if a < b, then vol(A) = b−a, and

(ii) if b≤ a, then vol(A) = 0R.

(54) LetA be a closed interval subset ofR anda, b be extended real numbers such thatA= [a,b].
Then

(i) if a < b, then vol(A) = b−a, and

(ii) if b≤ a, then vol(A) = 0R.

(55) Let A be a right open interval subset ofR anda, b be extended real numbers such that
A = [a,b[. Then

(i) if a < b, then vol(A) = b−a, and

(ii) if b≤ a, then vol(A) = 0R.

(56) Let A be a left open interval subset ofR and a, b be extended real numbers such that
A = ]a,b]. Then

(i) if a < b, then vol(A) = b−a, and

(ii) if b≤ a, then vol(A) = 0R.
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(57) Leta, b, c be extended real numbers. Supposea=−∞ andb∈R andc= +∞ andA= ]a,b[
or A= ]b,c[ or A= [a,b] or A= [b,c] or A= [a,b[ or A= [b,c[ or A= ]a,b] or A= ]b,c]. Then
vol(A) = +∞.

(58) For all extended real numbersa, b such thata=−∞ butb= +∞ butA= ]a,b[ or A= [a,b]
or A = [a,b[ or A = ]a,b] holds vol(A) = +∞.

One can verify that there exists an interval which is empty.
/0 is an empty interval.
One can prove the following four propositions:

(60)3 vol( /0) = 0R.

(61) If A⊆ B andB = [a,b] andb≤ a, then vol(A) = 0R and vol(B) = 0R.

(62) If A⊆ B, then vol(A)≤ vol(B).

(63) 0R ≤ vol(A).
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