Properties of Caratheodor's Measure

Józef Białas University of Łódź

Summary. The paper contains definitions and basic properties of Caratheodor's measure, with values in $\overline{\mathbb{R}}$, the enlarged set of real numbers, where $\overline{\mathbb{R}}$ denotes set $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ - by [10]. The article includes the text being a continuation of the paper [5]. Caratheodor's theorem and some theorems concerning basic properties of Caratheodor's measure are proved. The work is the sixth part of the series of articles concerning the Lebesgue measure theory.

MML Identifier: MEASURE 4.

WWW: http://mizar.org/JFM/Vol4/measure4.html

The articles [11], [8], [13], [12], [14], [6], [7], [1], [9], [2], [3], [4], and [5] provide the notation and terminology for this paper.

We adopt the following convention: x, y, z denote extended real numbers, A, B, X denote sets, and S denotes a σ -field of subsets of X.

We now state several propositions:

- (1) If $0_{\overline{\mathbb{R}}} \le x$ and $0_{\overline{\mathbb{R}}} \le y$ and $0_{\overline{\mathbb{R}}} \le z$, then (x+y)+z=x+(y+z).
- (2) If $x \neq -\infty$ and $x \neq +\infty$, then $y + x \leq z$ iff $y \leq z x$.
- (3) If $0_{\overline{\mathbb{R}}} \le x$ and $0_{\overline{\mathbb{R}}} \le y$, then x + y = y + x.
- (4) Let *S* be a non empty family of subsets of *X*, *F*, *G* be functions from \mathbb{N} into *S*, and *A* be an element of *S*. If for every element *n* of \mathbb{N} holds $G(n) = A \cap F(n)$, then $\bigcup \operatorname{rng} G = A \cap \bigcup \operatorname{rng} F$.
- (5) Let S be a non empty family of subsets of X and F, G be functions from $\mathbb N$ into S. Suppose G(0) = F(0) and for every element n of $\mathbb N$ holds $G(n+1) = F(n+1) \cup G(n)$. Let H be a function from $\mathbb N$ into S. Suppose H(0) = F(0) and for every element n of $\mathbb N$ holds $H(n+1) = F(n+1) \setminus G(n)$. Then $\bigcup \operatorname{rng} F = \bigcup \operatorname{rng} H$.
- (6) 2^X is a σ -field of subsets of X.

Let *X* be a set and let *F* be a function from \mathbb{N} into 2^X . Then rng *F* is a family of subsets of *X*.

Let X be a set and let A be a family of subsets of X. Then $\bigcup A$ is an element of 2^X .

Let Y be a set, let X, Z be non empty sets, let F be a function from Y into X, and let M be a function from X into Z. Then $M \cdot F$ is a function from Y into Z.

The following three propositions are true:

- (7) Let a, b be extended real numbers. Then there exists a function M from 2^X into $\overline{\mathbb{R}}$ such that for every element A of 2^X holds
- (i) if $A = \emptyset$, then M(A) = a, and
- (ii) if $A \neq \emptyset$, then M(A) = b.

- (8) There exists a function M from 2^X into $\overline{\mathbb{R}}$ such that for every element A of 2^X holds $M(A) = 0_{\overline{\mathbb{R}}}$.
- $(11)^1$ There exists a function M from 2^X into $\overline{\mathbb{R}}$ such that
 - (i) M is non-negative,
- (ii) $M(\emptyset) = 0_{\overline{\mathbb{R}}}$, and
- (iii) for all elements A, B of 2^X such that $A \subseteq B$ holds $M(A) \le M(B)$ and for every function F from $\mathbb N$ into 2^X holds $M(\bigcup \operatorname{rng} F) \le \sum (M \cdot F)$.

Let X be a set. A function from 2^X into $\overline{\mathbb{R}}$ is said to be a Caratheodor's measure on X if it satisfies the conditions (Def. 2).

(Def. 2)²(i) It is non-negative,

- (ii) $it(\emptyset) = 0_{\overline{\mathbb{R}}}$, and
- (iii) for all elements A, B of 2^X such that $A \subseteq B$ holds $it(A) \le it(B)$ and for every function F from $\mathbb N$ into 2^X holds $it(\bigcup rng F) \le \sum (it \cdot F)$.

In the sequel *C* denotes a Caratheodor's measure on *X*.

Let X be a set and let C be a Caratheodor's measure on X. The functor σ -Field(C) yields a non empty family of subsets of X and is defined by the condition (Def. 3).

(Def. 3) Let *A* be an element of 2^X . Then $A \in \sigma$ -Field(*C*) if and only if for all elements *W*, *Z* of 2^X such that $W \subseteq A$ and $Z \subseteq X \setminus A$ holds $C(W) + C(Z) \le C(W \cup Z)$.

One can prove the following propositions:

- (12) For all elements W, Z of 2^X holds $C(W \cup Z) \le C(W) + C(Z)$.
- (13) For all elements W, Z of 2^X holds C(Z) + C(W) = C(W) + C(Z).
- (14) Let *A* be an element of 2^X . Then $A \in \sigma$ -Field(*C*) if and only if for all elements *W*, *Z* of 2^X such that $W \subseteq A$ and $Z \subseteq X \setminus A$ holds $C(W) + C(Z) = C(W \cup Z)$.
- (15) For all elements W, Z of 2^X such that $W \in \sigma$ -Field(C) and $Z \in \sigma$ -Field(C) and Z misses W holds $C(W \cup Z) = C(W) + C(Z)$.
- (16) If $A \in \sigma$ -Field(C), then $X \setminus A \in \sigma$ -Field(C).
- (17) If $A \in \sigma$ -Field(C) and $B \in \sigma$ -Field(C), then $A \cup B \in \sigma$ -Field(C).
- (18) If $A \in \sigma$ -Field(C) and $B \in \sigma$ -Field(C), then $A \cap B \in \sigma$ -Field(C).
- (19) If $A \in \sigma$ -Field(C) and $B \in \sigma$ -Field(C), then $A \setminus B \in \sigma$ -Field(C).
- (20) Let N be a function from \mathbb{N} into S and A be an element of S. Then there exists a function F from \mathbb{N} into S such that for every element n of \mathbb{N} holds $F(n) = A \cap N(n)$.
- (21) σ -Field(C) is a σ -field of subsets of X.

Let X be a set and let C be a Caratheodor's measure on X. One can check that σ -Field(C) is σ -field of subsets-like, closed for complement operator, and non empty.

Let *X* be a set, let *S* be a σ -field of subsets of *X*, and let *A* be a subfamily of *S*. Then $\bigcup A$ is an element of *S*.

Let *X* be a set and let *C* be a Caratheodor's measure on *X*. The functor σ -Meas(*C*) yielding a function from σ -Field(*C*) into $\overline{\mathbb{R}}$ is defined as follows:

(Def. 4) For every element *A* of 2^X such that $A \in \sigma$ -Field(*C*) holds $(\sigma$ -Meas(*C*))(*A*) = *C*(*A*).

¹ The propositions (9) and (10) have been removed.

² The definition (Def. 1) has been removed.

We now state the proposition

(22) σ -Meas(C) is a measure on σ -Field(C).

Let X be a set, let C be a Caratheodor's measure on X, and let A be an element of σ -Field(C). Then C(A) is an extended real number.

One can prove the following proposition

(23) σ -Meas(C) is a σ -measure on σ -Field(C).

Let X be a set and let C be a Caratheodor's measure on X. Then σ -Meas(C) is a σ -measure on σ -Field(C).

One can prove the following two propositions:

- (24) For every element A of 2^X such that $C(A) = 0_{\overline{\mathbb{R}}}$ holds $A \in \sigma$ -Field(C).
- (25) σ -Meas(C) is complete on σ -Field(C).

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_1.html.
- [3] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/supinf_2.html.
- [4] Józef Białas. The σ-additive measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/measure1.
- [5] Józef Białas. Completeness of the σ-additive measure. Measure theory. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vo14/measure3.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [9] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [10] R. Sikorski. Rachunek różniczkowy i całkowy funkcje wielu zmiennych. Biblioteka Matematyczna. PWN Warszawa, 1968.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 25, 1992

Published January 2, 2004