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Summary. The paper contains definitions and basic properties of Caratheodor’s mea-
sure, with values iR, the enlarged set of real numbers, wh&edenotes seR = RU
{—m, 40} - by [10]. The article includes the text being a continuation of the peger [5].
Caratheodor’s theorem and some theorems concerning basic properties of Caratheodor’s mea-
sure are proved. The work is the sixth part of the series of articles concerning the Lebesgue
measure theory.
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The articles[[11],18],[[13],[[12],[[14],16],17],.[1],[9],02], 3], [4], and [5] provide the notation and
terminology for this paper.

We adopt the following conventiorx, y, zdenote extended real numbefs B, X denote sets,
andSdenotes a-field of subsets oK.

We now state several propositions:

(1) Ifog <xand @ <yand g <z then(x+y)+z=x+(y+2).
(2) If x# —oo andx # +oo, theny+x < ziff y <z—x.
(38) If0g <xand @ <y, thenx+y=y+x.

(4) LetSbe anon empty family of subsetsXf F, G be functions fronN into S, andA be an
element ofS. If for every elemenh of N holdsG(n) = ANF(n), thenJrngG = ANUrngF.

(5) LetSbe a non empty family of subsetsXfandF, G be functions fronN into S. Suppose
G(0) = F(0) and for every elemem of N holdsG(n+ 1) = F(n+ 1) UG(n). Let H be a
function fromN into S. SupposéH (0) = F(0) and for every elemenmtof N holdsH(n+1) =
F(n+1)\ G(n). ThenrngF = JrngH.

(6) 2Xis ao-field of subsets oK.

Let X be a set and I€f be a function fronN into 2X. Then rngF is a family of subsets oX.

Let X be a set and le be a family of subsets of. Then|JA is an element of 2.

LetY be a set, leX, Z be non empty sets, I& be a function fronmy into X, and letM be a
function fromX into Z. ThenM - F is a function fromY into Z.

The following three propositions are true:

(7) Leta, bbe extended real numbers. Then there exists a funbtiom 2% into R such that
for every elemena of 2% holds

@i if A=0,thenM(A)=4a, and
(i) if A#£0,thenM(A)=h.
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(8) There exists a functioll from 2X into R such that for every elemeatof 2% holdsM (A) =
Og.

(11E] There exists a functioM from 2X into R such that
(i) M is non-negative,
(i)  M(0) =0g, and

(iii) ~ for all elementsA, B of 2% such thatA C B holdsM(A) < M(B) and for every functiorr
from N into 2X holdsM(UrngF) < 5(M-F).

Let X be a set. A function from’into R is said to be a Caratheodor’'s measureXoif it
satisfies the conditions (Def. 2).

(Def. 2J(i)  Itis non-negative,

(i) it(0)=0g, and
(iii)  for all elementsA, B of 2X such thatA C B holds i A) < it(B) and for every functiorF
from N into 2X holds if(JrngF) < 5 (it - F).

In the sequeC denotes a Caratheodor’'s measurexon
Let X be a set and leZ be a Caratheodor’'s measureXnThe functoro-Field(C) yields a non
empty family of subsets of and is defined by the condition (Def. 3).

(Def. 3) LetAbe an element of’2 ThenA € o-Field(C) if and only if for all element&V, Z of 2X
such thaWv C AandZ C X\ AholdsC(W) +C(Z) <C(WUZ).

One can prove the following propositions:

(12) For all elementsV, Z of 2X holdsC(W U Z) < C(W) +C(Z).
(13) For all element®V, Z of 2X holdsC(Z) +C(W) = C(W) +C(2).

(14) LetAbe an element of2 ThenA € o-Field(C) if and only if for all element$V, Z of 2%
such thaWv C AandZ C X\ AholdsC(W)+C(Z) =C(WUZ).

(15) For all elementsV, Z of 2X such thaW € o-Field(C) andZ € o-Field(C) andZ missesV
holdsC(WU Z) =C(W) +C(Z).

(16) If A€ o-Field(C), thenX \ A € o-Field(C).

(17) If A€ o-Field(C) andB € o-Field(C), thenAUB € o-Field(C).
(18) If A€ o-Field(C) andB € o-Field(C), thenANB € o-Field(C).
(19) If A€ o-Field(C) andB € o-Field(C), thenA\ B € o-Field(C).

(20) LetN be a function fronN into SandA be an element db. Then there exists a functidn
from N into Ssuch that for every elementof N holdsF (n) = ANN(n).

(21) o-Field(C) is ao-field of subsets oX.

Let X be a set and le€ be a Caratheodor's measure X¥n One can check that-Field(C) is
o-field of subsets-like, closed for complement operator, and non empty.

Let X be a set, leS be ao-field of subsets oK, and letA be a subfamily oS ThenJAis an
element ofS

Let X be a set and Ie€ be a Caratheodor's measure Xn The functoro-MeagC) yielding a
function fromo-Field(C) into R is defined as follows:

(Def. 4) For every element of 2% such thatA € o-Field(C) holds(o-MeagC))(A) = C(A).

1 The propositions (9) and (10) have been removed.
2 The definition (Def. 1) has been removed.
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We now state the proposition

(22) o-MeagC) is a measure oa-Field(C).

Let X be a set, le€ be a Caratheodor's measure ¥nand letA be an element of-Field(C).

ThenC(A) is an extended real number.

One can prove the following proposition

(23) 0-MeagC) is ac-measure ow-Field(C).

Let X be a set and le€ be a Caratheodor’s measure X¥nTheno-MeagC) is ac-measure on

o-Field(C).

One can prove the following two propositions:

(24) For every elemenf of 2 such thaC(A) = O holdsA € o-Field(C).

(25) o0-MeagC) is complete oro-Field(C).
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