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Summary. The paper contains definitions and basic properties of Caratheodor’s mea-
sure, with values inR, the enlarged set of real numbers, whereR denotes setR = R ∪
{−∞,+∞} - by [10]. The article includes the text being a continuation of the paper [5].
Caratheodor’s theorem and some theorems concerning basic properties of Caratheodor’s mea-
sure are proved. The work is the sixth part of the series of articles concerning the Lebesgue
measure theory.
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The articles [11], [8], [13], [12], [14], [6], [7], [1], [9], [2], [3], [4], and [5] provide the notation and
terminology for this paper.

We adopt the following convention:x, y, z denote extended real numbers,A, B, X denote sets,
andSdenotes aσ-field of subsets ofX.

We now state several propositions:

(1) If 0R ≤ x and 0R ≤ y and 0R ≤ z, then(x+y)+z= x+(y+z).

(2) If x 6=−∞ andx 6= +∞, theny+x≤ z iff y≤ z−x.

(3) If 0R ≤ x and 0R ≤ y, thenx+y = y+x.

(4) LetSbe a non empty family of subsets ofX, F , G be functions fromN into S, andA be an
element ofS. If for every elementn of N holdsG(n) = A∩F(n), then

⋃
rngG = A∩

⋃
rngF.

(5) LetSbe a non empty family of subsets ofX andF , G be functions fromN into S. Suppose
G(0) = F(0) and for every elementn of N holdsG(n+ 1) = F(n+ 1)∪G(n). Let H be a
function fromN into S. SupposeH(0) = F(0) and for every elementn of N holdsH(n+1) =
F(n+1)\G(n). Then

⋃
rngF =

⋃
rngH.

(6) 2X is aσ-field of subsets ofX.

Let X be a set and letF be a function fromN into 2X. Then rngF is a family of subsets ofX.
Let X be a set and letA be a family of subsets ofX. Then

⋃
A is an element of 2X.

Let Y be a set, letX, Z be non empty sets, letF be a function fromY into X, and letM be a
function fromX into Z. ThenM ·F is a function fromY into Z.

The following three propositions are true:

(7) Leta, b be extended real numbers. Then there exists a functionM from 2X into R such that
for every elementA of 2X holds

(i) if A = /0, thenM(A) = a, and

(ii) if A 6= /0, thenM(A) = b.
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(8) There exists a functionM from 2X into R such that for every elementA of 2X holdsM(A) =
0R.

(11)1 There exists a functionM from 2X into R such that

(i) M is non-negative,

(ii) M( /0) = 0R, and

(iii) for all elementsA, B of 2X such thatA⊆ B holdsM(A)≤M(B) and for every functionF
from N into 2X holdsM(

⋃
rngF)≤ ∑(M ·F).

Let X be a set. A function from 2X into R is said to be a Caratheodor’s measure onX if it
satisfies the conditions (Def. 2).

(Def. 2)2(i) It is non-negative,

(ii) it ( /0) = 0R, and

(iii) for all elementsA, B of 2X such thatA⊆ B holds it(A) ≤ it(B) and for every functionF
from N into 2X holds it(

⋃
rngF)≤ ∑(it ·F).

In the sequelC denotes a Caratheodor’s measure onX.
Let X be a set and letC be a Caratheodor’s measure onX. The functorσ-Field(C) yields a non

empty family of subsets ofX and is defined by the condition (Def. 3).

(Def. 3) LetA be an element of 2X. ThenA∈ σ-Field(C) if and only if for all elementsW, Z of 2X

such thatW ⊆ A andZ⊆ X \A holdsC(W)+C(Z)≤C(W∪Z).

One can prove the following propositions:

(12) For all elementsW, Z of 2X holdsC(W∪Z)≤C(W)+C(Z).

(13) For all elementsW, Z of 2X holdsC(Z)+C(W) = C(W)+C(Z).

(14) LetA be an element of 2X. ThenA∈ σ-Field(C) if and only if for all elementsW, Z of 2X

such thatW ⊆ A andZ⊆ X \A holdsC(W)+C(Z) = C(W∪Z).

(15) For all elementsW, Z of 2X such thatW ∈ σ-Field(C) andZ ∈ σ-Field(C) andZ missesW
holdsC(W∪Z) = C(W)+C(Z).

(16) If A∈ σ-Field(C), thenX \A∈ σ-Field(C).

(17) If A∈ σ-Field(C) andB∈ σ-Field(C), thenA∪B∈ σ-Field(C).

(18) If A∈ σ-Field(C) andB∈ σ-Field(C), thenA∩B∈ σ-Field(C).

(19) If A∈ σ-Field(C) andB∈ σ-Field(C), thenA\B∈ σ-Field(C).

(20) LetN be a function fromN into SandA be an element ofS. Then there exists a functionF
from N into Ssuch that for every elementn of N holdsF(n) = A∩N(n).

(21) σ-Field(C) is aσ-field of subsets ofX.

Let X be a set and letC be a Caratheodor’s measure onX. One can check thatσ-Field(C) is
σ-field of subsets-like, closed for complement operator, and non empty.

Let X be a set, letSbe aσ-field of subsets ofX, and letA be a subfamily ofS. Then
⋃

A is an
element ofS.

Let X be a set and letC be a Caratheodor’s measure onX. The functorσ-Meas(C) yielding a
function fromσ-Field(C) into R is defined as follows:

(Def. 4) For every elementA of 2X such thatA∈ σ-Field(C) holds(σ-Meas(C))(A) = C(A).

1 The propositions (9) and (10) have been removed.
2 The definition (Def. 1) has been removed.
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We now state the proposition

(22) σ-Meas(C) is a measure onσ-Field(C).

Let X be a set, letC be a Caratheodor’s measure onX, and letA be an element ofσ-Field(C).
ThenC(A) is an extended real number.

One can prove the following proposition

(23) σ-Meas(C) is aσ-measure onσ-Field(C).

Let X be a set and letC be a Caratheodor’s measure onX. Thenσ-Meas(C) is aσ-measure on
σ-Field(C).

One can prove the following two propositions:

(24) For every elementA of 2X such thatC(A) = 0R holdsA∈ σ-Field(C).

(25) σ-Meas(C) is complete onσ-Field(C).
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