# Completeness of the $\sigma$-Additive Measure. Measure Theory 

Józef Białas<br>University of Łódź

Summary. Definitions and basic properties of a $\sigma$-additive, non-negative measure, with values in $\overline{\mathbb{R}}$, the enlarged set of real numbers, where $\overline{\mathbb{R}}$ denotes set $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$ - by [10]. The article includes the text being a continuation of the paper [5]. Some theorems concerning basic properties of a $\sigma$-additive measure and completeness of the measure are proved.

MML Identifier: MEASURE3.
WWW: http://mizar.org/JFM/Vol4/measure3.html

The articles [11], [8], [13], [12], [14], [6], [7], [1], [9], [2], [3], [4], and [5] provide the notation and terminology for this paper.

In this paper $X$ denotes a set.
One can prove the following four propositions:
(1) For every extended real number $x$ such that $-\infty<x$ and $x<+\infty$ holds $x$ is a real number.
(2) For every extended real number $x$ such that $x \neq-\infty$ and $x \neq+\infty$ holds $x$ is a real number.
(3) For all functions $F_{1}, F_{2}$ from $\mathbb{N}$ into $\overline{\mathbb{R}}$ such that for every natural number $n$ holds $\left(\operatorname{Ser} F_{1}\right)(n) \leq\left(\operatorname{Ser} F_{2}\right)(n)$ holds $\sum F_{1} \leq \sum F_{2}$.
(4) For all functions $F_{1}, F_{2}$ from $\mathbb{N}$ into $\overline{\mathbb{R}}$ such that for every natural number $n$ holds $\left(\operatorname{Ser} F_{1}\right)(n)=\left(\operatorname{Ser} F_{2}\right)(n)$ holds $\sum F_{1}=\sum F_{2}$.

Let $X$ be a set and let $S$ be a $\sigma$-field of subsets of $X$. We introduce subfamily of $S$ as a synonym of family of measurable sets of $S$.

Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, and let $F$ be a function from $\mathbb{N}$ into $S$. Then $\operatorname{rng} F$ is a family of measurable sets of $S$

Next we state a number of propositions:
(5) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S, F$ be a function from $\mathbb{N}$ into $S$, and $A$ be an element of $S$. If $\bigcap \operatorname{rng} F \subseteq A$ and for every element $n$ of $\mathbb{N}$ holds $A \subseteq F(n)$, then $M(A)=M(\bigcap \mathrm{rng} F)$.
(6) Let $S$ be a $\sigma$-field of subsets of $X$ and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $\bigcup \mathrm{rng} G=F(0) \backslash \bigcap \mathrm{rng} F$.
(7) Let $S$ be a $\sigma$-field of subsets of $X$ and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $\bigcap \mathrm{rng} F=F(0) \backslash \bigcup \mathrm{rng} G$.
(8) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=$ $F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $M(\bigcap \operatorname{rng} F)=M(F(0))-M(\bigcup \operatorname{rng} G)$.
(9) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=$ $F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $M(\cup \operatorname{rng} G)=M(F(0))-M(\bigcap \operatorname{rng} F)$.
(10) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=$ $F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $M(\bigcap \operatorname{rng} F)=M(F(0))-\operatorname{suprng}(M \cdot G)$.
(11) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=$ $F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then suprng $(M \cdot G)$ is a real number and $M(F(0))$ is a real number and $\inf \operatorname{rng}(M \cdot F)$ is a real number.
(12) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=$ $F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then suprng $(M \cdot G)=M(F(0))-\operatorname{infrng}(M \cdot F)$.
(13) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $G, F$ be functions from $\mathbb{N}$ into $S$. Suppose $M(F(0))<+\infty$ and $G(0)=\emptyset$ and for every element $n$ of $\mathbb{N}$ holds $G(n+1)=$ $F(0) \backslash F(n)$ and $F(n+1) \subseteq F(n)$. Then $\operatorname{infrng}(M \cdot F)=M(F(0))-\operatorname{suprng}(M \cdot G)$.
(14) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $F$ be a function from $\mathbb{N}$ into $S$. Suppose for every element $n$ of $\mathbb{N}$ holds $F(n+1) \subseteq F(n)$ and $M(F(0))<+\infty$. Then $M(\bigcap \operatorname{rng} F)=\operatorname{infrng}(M \cdot F)$.
(15) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a measure on $S, T$ be a family of measurable sets of $S$, and $F$ be a sequence of separated subsets of $S$. If $T=\operatorname{rng} F$, then $\sum(M \cdot F) \leq M(\cup T)$.
(16) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a measure on $S$, and $F$ be a sequence of separated subsets of $S$. Then $\sum(M \cdot F) \leq M(\bigcup \operatorname{rng} F)$.
(17) Let $S$ be a $\sigma$-field of subsets of $X$ and $M$ be a measure on $S$. Suppose that for every sequence $F$ of separated subsets of $S$ holds $M(\bigcup \operatorname{rng} F) \leq \sum(M \cdot F)$. Then $M$ is a $\sigma$-measure on $S$.

Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, and let $M$ be a $\sigma$-measure on $S$. We say that $M$ is complete on $S$ if and only if:
(Def. 2) For every subset $A$ of $X$ and for every set $B$ such that $B \in S$ holds if $A \subseteq B$ and $M(B)=0_{\overline{\mathbb{R}}}$, then $A \in S$.

Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, and let $M$ be a $\sigma$-measure on $S$. A subset of $X$ is called a set with measure zero w.r.t. $M$ if:
(Def. 3) There exists a set $B$ such that $B \in S$ and it $\subseteq B$ and $M(B)=0_{\overline{\mathbb{R}}}$.
Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, and let $M$ be a $\sigma$-measure on $S$. The functor $\operatorname{COM}(S, M)$ yielding a non empty family of subsets of $X$ is defined by the condition (Def. 4).
(Def. 4) Let $A$ be a set. Then $A \in \operatorname{COM}(S, M)$ if and only if there exists a set $B$ such that $B \in S$ and there exists a set $C$ with measure zero w.r.t. $M$ such that $A=B \cup C$.

Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, let $M$ be a $\sigma$-measure on $S$, and let $A$ be an element of $\operatorname{COM}(S, M)$. The functor MeasPartA yielding a non empty family of subsets of $X$ is defined as follows:
(Def. 5) For every set $B$ holds $B \in$ MeasPart $A$ iff $B \in S$ and $B \subseteq A$ and $A \backslash B$ is a set with measure zero w.r.t. $M$.

[^0]Next we state four propositions:
(18) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $F$ be a function from $\mathbb{N}$ into $\operatorname{COM}(S, M)$. Then there exists a function $G$ from $\mathbb{N}$ into $S$ such that for every element $n$ of $\mathbb{N}$ holds $G(n) \in \operatorname{MeasPart} F(n)$.
(19) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S, F$ be a function from $\mathbb{N}$ into $\operatorname{COM}(S, M)$, and $G$ be a function from $\mathbb{N}$ into $S$. Then there exists a function $H$ from $\mathbb{N}$ into $2^{X}$ such that for every element $n$ of $\mathbb{N}$ holds $H(n)=F(n) \backslash G(n)$.
(20) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $F$ be a function from $\mathbb{N}$ into $2^{X}$. Suppose that for every element $n$ of $\mathbb{N}$ holds $F(n)$ is a set with measure zero w.r.t. $M$. Then there exists a function $G$ from $\mathbb{N}$ into $S$ such that for every element $n$ of $\mathbb{N}$ holds $F(n) \subseteq G(n)$ and $M(G(n))=0_{\overline{\mathbb{R}}}$.
(21) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $D$ be a non empty family of subsets of $X$. Suppose that for every set $A$ holds $A \in D$ iff there exists a set $B$ such that $B \in S$ and there exists a set $C$ with measure zero w.r.t. $M$ such that $A=B \cup C$. Then $D$ is a $\sigma$-field of subsets of $X$.

Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, and let $M$ be a $\sigma$-measure on $S$. One can verify that $\operatorname{COM}(S, M)$ is $\sigma$-field of subsets-like, closed for complement operator, and non empty.

We now state the proposition
(22) Let $S$ be a $\sigma$-field of subsets of $X, M$ be a $\sigma$-measure on $S$, and $B_{1}, B_{2}$ be sets. Suppose $B_{1} \in S$ and $B_{2} \in S$. Let $C_{1}, C_{2}$ be sets with measure zero w.r.t. $M$. If $B_{1} \cup C_{1}=B_{2} \cup C_{2}$, then $M\left(B_{1}\right)=M\left(B_{2}\right)$.

Let $X$ be a set, let $S$ be a $\sigma$-field of subsets of $X$, and let $M$ be a $\sigma$-measure on $S$. The functor $\operatorname{COM}(M)$ yielding a $\sigma$-measure on $\operatorname{COM}(S, M)$ is defined by:
(Def. 6) For every set $B$ such that $B \in S$ and for every set $C$ with measure zero w.r.t. $M$ holds $(\operatorname{COM}(M))(B \cup C)=M(B)$.

We now state the proposition
(23) For every $\sigma$-field $S$ of subsets of $X$ and for every $\sigma$-measure $M$ on $S$ holds $\operatorname{COM}(M)$ is complete on $\operatorname{COM}(S, M)$.

## REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_1.html
[3] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/supinf_2.html.
[4] Józef Białas. The $\sigma$-additive measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/measure1. html.
[5] Józef Białas. Several properties of the $\sigma$-additive measure. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/measure2.html
[6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. zfmisc_1.html
[9] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html
[10] R. Sikorski. Rachunek różniczkowy i catkowy - funkcje wielu zmiennych. Biblioteka Matematyczna. PWN - Warszawa, 1968.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received February 22, 1992
Published January 2, 2004


[^0]:    ${ }^{1}$ The definition (Def. 1) has been removed.

