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Summary. A continuation of[4]. The paper contains the definition and basic prop-
erties of ag-additive, nonnegative measure, with valueRinthe enlarged set of real num-
bers, whereR denotes seR = RU {—, 4o} — by R. Sikorski[9]. Some simple theorems
concerning basic properties of;aadditive measure, measurable sets, measure zero sets are
proved. The work is the fourth part of the series of articles concerning the Lebesgue measure
theory.
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The articles([10], 7], [[1R],11],[113],15],[16], 1], 18], 2], ([8], and.[4] provide the notation and
terminology for this paper.

In this papetX denotes a set.

We now state the proposition

(1) LetSbe ao-field of subsets oK, M be ac-measure o1$, andF be a function fronN into
S ThenM - F is non-negative.

Let X be a set and le$ be ao-field of subsets oK. A denumerable family of subsets Hfis
said to be a family of measurable setsif:

(Def.1) ItC S

One can prove the following proposition

(3H For everyo-field S of subsets oK and for every familyT of measurable sets &holds
AT eSandJT €S

Let X be a set, leEbe ac-field of subsets oK, and letT be a family of measurable sets &f
ThenNT is an element 08. ThenJT is an element o0&
We now state a number of propositions:

(4) LetSbe ao-field of subsets oK andN be a function fronN into S. Then there exists a
functionF from N into Ssuch thaf (0) = N(0) and for every elememtof N holdsF (n+1) =
N(n+1)\ N(n).

(5) LetSbe aoc-field of subsets oK andN be a function fronN into S. Then there exists a
functionF from N into Ssuch thaf (0) = N(0) and for every elememtof N holdsF (n+1) =
N(n+1)UF(n).

1 The proposition (2) has been removed.
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(6) LetShbe anon empty family of subsetsXfandN, F be functions fronN into S. Suppose
F(0) = N(0) and for every element of N holdsF (n+ 1) = N(n+ 1) UF(n). Letr be a set
andn be a natural number. There F(n) if and only if there exists a natural numbdesuch

thatk < nandr € N(k).

(7) LetSbe a non empty family of subsetsXfandN, F be functions fronN into S. Suppose
F(0) = N(0) and for every elememi of N holdsF(n+1) = N(n+ 1) UF(n). Letn, mbe
natural numbers. I < m, thenF(n) C F(m).

(8) LetSbe a non empty family of subsets ¥fandN, G, F be functions fromN into S.
Suppose that

(i) G(0)=N(0),

(i) for every elemenh of N holdsG(n+ 1) = N(n+ 1) UG(n),

(i)  F(0) =N(0), and

(iv) for every elemenh of N holdsF (n+ 1) = N(n+1) \ G(n).

Let n, mbe natural numbers. < m, thenF(n) C G(m).

(9) LetSbe aoc-field of subsets oK andN, G be functions fronN into S. Then there exists a
functionF from N into Ssuch thaf (0) = N(0) and for every elememtof N holdsF (n+1) =
N(n+ 1)\ G(n).

(10) LetSbe ac-field of subsets oK andN be a function fromN into S. Then there exists a
functionF from N into Ssuch thaf (0) = 0 and for every element of N holdsF(n+1) =
N(0) \N(n).

(11) LetSbe ao-field of subsets oK andN, G, F be functions fronN into S. Suppose that

() G(0)=N(0),

(i) for every elemenh of N holdsG(n+ 1) = N(n+ 1) UG(n),

(i)  F(0)=N(0), and

(iv) for every element of N holdsF(n+1) = N(n+1)\ G(n).

Let n, mbe natural numbers. tf < m, thenF (n) misses (m).

(13@ Let Sbe ac-field of subsets oK, M be ag-measure org, T be a family of measurable
sets ofS, andF be a function fronN into S. If T = rngF, thenM(UT) < S(M-F).

(14) LetSbe ao-field of subsets oK andT be a family of measurable sets &f Then there
exists a functiorF from N into Ssuch thafl = rngF.

(15) LetShe aoc-field of subsets oK andN, F be functions fronN into S. Supposé-(0) =0
and for every elememt of N holdsF (n+1) = N(0) \ N(n) andN(n+1) C N(n). Letnbe an
element ofN. ThenF(n) C F(n+1).

(16) LetSbe ac-field of subsets 0K, M be ac-measure o1, andT be a family of measurable
sets ofS. Suppose that for every satsuch thatA € T holdsA is a set of measure zero w.r.t.
M. ThenT is a set of measure zero w.i.

(17) LetSbe ao-field of subsets oK, M be ac-measure o1%, andT be a family of measurable
sets ofS. Given a sefA such thatA € T andA is a set of measure zero w.M. ThenNT is a

set of measure zero w.ril.

(18) LetSbe ao-field of subsets oK, M be ac-measure o1%, andT be a family of measurable
sets ofS. Suppose that for every satsuch thatA € T holdsA is a set of measure zero w.r.t.
M. ThenT is a set of measure zero w.i.

Let X be a set, leEbe ao-field of subsets oK, and letl; be a family of measurable sets &f
We say that, is non-decreasing if and only if:

2 The proposition (12) has been removed.
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(Def. 2) There exists a functidfh from N into Ssuch that; = rngF and for every element of N
holdsF (n) C F(n+1).

Let X be a set and | be ac-field of subsets oK. Note that there exists a family of measurable
sets ofSwhich is non-decreasing.

Let X be a set, leEbe ao-field of subsets oK, and letl; be a family of measurable sets &f
We say that; is non-increasing if and only if:

(Def. 3) There exists a functida from N into Ssuch that; = rngF and for every element of N
holdsF (n+1) C F(n).

LetX be a set and I be ac-field of subsets oK. Note that there exists a family of measurable
sets ofSwhich is non-increasing.
One can prove the following propositions:

(21 Let Sbe ao-field of subsets oK andN, F be functions fronN into S. Supposé-(0) = 0
and for every elememtof N holdsF (n+ 1) = N(0) \ N(n) andN(n+ 1) C N(n). Then rng~
is a non-decreasing family of measurable setS. of

(22) LetSbe a non empty family of subsets ¥fandN be a function fronN into S. Suppose
that for every elememnt of N holdsN(n) € N(n+1). Letm, n be natural numbers. i < m,
thenN(n) € N(m).

(23) LetSbe ao-field of subsets oK andN, F be functions froniN into S’ Supposé-(0) =
N(0) and for every element of N holdsF (n+1) = N(n+ 1)\ N(n) andN(n) C N(n+1).
Let n, mbe natural numbers. i < m, thenF (n) misses (m).

(24) LetSbe ao-field of subsets oK andN, F be functions fromN into S. Supposé-(0) =
N(O) and for every element of N holdsF (n+1) = N(n+1) \ N(n) andN(n) C N(n+1).
ThenJrngF = JrngN.

(25) LetSbe ao-field of subsets oK andN, F be functions fromN into S. Supposé-(0) =
N(0) and for every element of N holdsF (n+1) = N(n+1) \ N(n) andN(n) C N(n+1).
ThenF is a sequence of separated subse& of

(26) LetSbe ao-field of subsets oK andN, F be functions froniN into S’ Supposé-(0) =
N(0) and for every element of N holdsF (n+1) = N(n+ 1)\ N(n) andN(n) C N(n+1).
ThenN(0) = F(0) and for every element of N holdsN(n+1) = F(n+ 1) UN(n).

(27) LetSbe ao-field of subsets oK, M be ac-measure o1$, andF be a function fronN into
S. If for every element of N holdsF (n) C F(n+1), thenM(UJrngF) = suprndM - F).
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