N-Tuples and Cartesian Products for $n = 9^1$

Michał Muzalewski Warsaw University Białystok Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. This article defines ordered n-tuples, projections and Cartesian products for n = 9. We prove many theorems concerning the basic properties of the n-tuples and Cartesian products that may be utilized in several further, more challenging applications. A few of these theorems are a strightforward consequence of the regularity axiom. The article originated as an upgrade of the article [7].

MML Identifier: MCART_6.

WWW: http://mizar.org/JFM/Vol2/mcart_6.html

The articles [6], [1], [8], [7], [2], [3], [4], and [5] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 denote sets, y, y_1 , y_2 , y_3 , y_4 , y_5 , y_6 , y_7 , y_8 , y_9 denote sets, X, X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 denote sets, Y, Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} , Y_{12} , Y_{13} , Y_{14} , Y_{15} denote sets, Z denotes a set, X_{10} denotes an element of X_1 , X_{11} denotes an element of X_2 , X_{12} denotes an element of X_3 , X_{13} denotes an element of X_7 , and X_{17} denotes an element of X_8 .

Next we state two propositions:

- (1) Suppose $X \neq \emptyset$. Then there exists Y such that
- (i) $Y \in X$, and
- (ii) for all Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} , Y_{12} , Y_{13} , Y_{14} such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y_8$ and $Y_8 \in Y_9$ and $Y_9 \in Y_{10}$ and $Y_{10} \in Y_{11}$ and $Y_{11} \in Y_{12}$ and $Y_{12} \in Y_{13}$ and $Y_{13} \in Y_{14}$ and $Y_{14} \in Y$ holds Y_1 misses X.
- (2) Suppose $X \neq \emptyset$. Then there exists Y such that
- (i) $Y \in X$, and
- (ii) for all Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} , Y_{12} , Y_{13} , Y_{14} , Y_{15} such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y_8$ and $Y_8 \in Y_9$ and $Y_9 \in Y_{10}$ and $Y_{10} \in Y_{11}$ and $Y_{11} \in Y_{12}$ and $Y_{12} \in Y_{13}$ and $Y_{13} \in Y_{14}$ and $Y_{14} \in Y_{15}$ and $Y_{15} \in Y$ holds Y_1 misses X.

Let us consider x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 . The functor $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$ is defined by:

(Def. 1) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \rangle, x_9 \rangle$.

One can prove the following propositions:

¹Supported by RPBP.III-24.C6.

- $(3) \quad \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle \langle \langle \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle, x_5 \rangle, x_6 \rangle, x_7 \rangle, x_8 \rangle, x_9 \rangle.$
- $(5)^{1} \langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9} \rangle = \langle \langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \rangle, x_{8}, x_{9} \rangle.$
- (6) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle, x_7, x_8, x_9 \rangle.$
- $(7) \quad \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle x_1, x_2, x_3, x_4, x_5 \rangle, x_6, x_7, x_8, x_9 \rangle.$
- (8) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle x_1, x_2, x_3, x_4 \rangle, x_5, x_6, x_7, x_8, x_9 \rangle.$
- (9) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle x_1, x_2, x_3 \rangle, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$.
- $(10) \quad \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle \langle x_1, x_2 \rangle, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle.$
- (11) If $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle = \langle y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9 \rangle$, then $x_1 = y_1$ and $x_2 = y_2$ and $x_3 = y_3$ and $x_4 = y_4$ and $x_5 = y_5$ and $x_6 = y_6$ and $x_7 = y_7$ and $x_8 = y_8$ and $x_9 = y_9$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 . The functor $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9:]$ yielding a set is defined as follows:

(Def. 2)
$$[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8:], X_9:].$$

The following propositions are true:

- $(12) \quad [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:::::::X_1, X_2:], X_3:], X_4:], X_5:], X_6:], X_7:], X_8:], X_9:].$
- $(14)^2$ [: $X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9$:] = [: [: $X_1, X_2, X_3, X_4, X_5 X_6 X_7$:], X_8, X_9 :].
- $(15) \quad [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:X_1, X_2, X_3, X_4, X_5 X_6:], X_7, X_8, X_9:].$
- $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:X_1, X_2, X_3, X_4, X_5:], X_6, X_7, X_8, X_9:]$
- $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:X_1, X_2, X_3, X_4:], X_5, X_6, X_7, X_8 X_9:].$
- $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:X_1, X_2, X_3:], X_4, X_5, X_6, X_7 X_8 X_9:].$
- $(19) \quad [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:[:X_1, X_2:], X_3, X_4, X_5, X_6 X_7 X_8 X_9:].$
- (20) $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ iff $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] \neq \emptyset$.
- (21) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Suppose $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7 Y_8 Y_9:]$. Then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$ and $X_6 = Y_6$ and $X_7 = Y_7$ and $X_8 = Y_8$ and $X_9 = Y_9$.
- (22) Suppose $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] \neq \emptyset$ and $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] = [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7 Y_8 Y_9:]$. Then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$ and $X_6 = Y_6$ and $X_7 = Y_7$ and $X_8 = Y_8$ and $X_9 = Y_9$.

In the sequel x_{18} denotes an element of X_9 .

Next we state the proposition

(24) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:]$. Then there exist $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}$ such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 . Let us assume that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Let X be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6, X_7 X_8, X_9:]$. The functor X_1 yielding an element of X_1 is defined by:

¹ The proposition (4) has been removed.

² The proposition (13) has been removed.

(Def. 3) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$, then $x_1 = x_1$.

The functor x_2 yields an element of X_2 and is defined as follows:

(Def. 4) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$, then $x_2 = x_2$.

The functor x_3 yields an element of X_3 and is defined by:

(Def. 5) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$, then $x_3 = x_3$.

The functor x_4 yielding an element of X_4 is defined as follows:

(Def. 6) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$, then $x_4 = x_4$.

The functor x_5 yields an element of X_5 and is defined as follows:

(Def. 7) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$$
, then $x_5 = x_5$.

The functor x_6 yielding an element of X_6 is defined by:

(Def. 8) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$$
, then $x_6 = x_6$.

The functor x_7 yields an element of X_7 and is defined as follows:

(Def. 9) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$$
, then $x_7 = x_7$.

The functor x_8 yielding an element of X_8 is defined as follows:

(Def. 10) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$$
, then $x_8 = x_8$.

The functor x_9 yielding an element of X_9 is defined by:

(Def. 11) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$$
, then $x_9 = x_9$.

Next we state several propositions:

- (25) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9]$ and given $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$. Suppose $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$. Then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$ and $x_6 = x_6$ and $x_7 = x_7$ and $x_8 = x_8$ and $x_9 = x_9$.
- (26) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9]$. Then $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$.
- (27) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:]$. Then $x_1 = (((((((x \mathbf{qua} \mathbf{set})_1)_1)_1)_1)_1)_1)_1)_1$ and $x_2 = (((((((x \mathbf{qua} \mathbf{set})_1)_1)_1)_1)_1)_1)_2$ and $x_3 = ((((((x \mathbf{qua} \mathbf{set})_1)_1)_1)_1)_2)_2$ and $x_4 = (((((x \mathbf{qua} \mathbf{set})_1)_1)_1)_1)_2)_2$ and $x_5 = ((((x \mathbf{qua} \mathbf{set})_1)_1)_1)_2)_2$ and $x_6 = ((((x \mathbf{qua} \mathbf{set})_1)_1)_2)_2$ and $x_7 = (((x \mathbf{qua} \mathbf{set})_1)_1)_2$ and $x_8 = ((x \mathbf{qua} \mathbf{set})_1)_2)_2$ and $x_9 = (x \mathbf{qua} \mathbf{set})_2$.
- (28) Suppose $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:]$ meets $[:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7 Y_8 Y_9:]$. Then X_1 meets Y_1 and X_2 meets Y_2 and X_3 meets Y_3 and X_4 meets Y_4 and X_5 meets Y_5 and X_6 meets Y_6 and X_7 meets Y_7 and Y_8 meets Y_8 and Y_9 meets Y_9 .

$$(29) \quad [\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}, \{x_9\}\}] = \{\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle\}.$$

For simplicity, we follow the rules: A_1 is a subset of X_1 , A_2 is a subset of X_2 , A_3 is a subset of X_3 , A_4 is a subset of X_4 , A_5 is a subset of X_5 , A_6 is a subset of X_6 , A_7 is a subset of X_7 , A_8 is a subset of X_8 , X_9 is a subset of X_9 , and X_9 is an element of $[X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9]$.

We now state a number of propositions:

- (30) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$. Let given $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$. Suppose $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$. Then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$ and $x_6 = x_6$ and $x_7 = x_7$ and $x_8 = x_8$ and $x_9 = x_9$.
- (31) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} , x_{17} , x_{18} such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_1 = x_{10}$. Then $y_1 = x_1$.
- (32) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}$ such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_2 = x_{11}$. Then $y_2 = x_2$.
- (33) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}$ such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_3 = x_{12}$. Then $y_3 = x_3$.
- (34) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}$ such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_4 = x_{13}$. Then $y_4 = x_4$.
- (35) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}$ such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_5 = x_{14}$. Then $y_5 = x_5$.
- (36) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}$ such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_6 = x_{15}$. Then $y_6 = x_6$.
- (37) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} , x_{17} , x_{18} such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_7 = x_{16}$. Then $y_7 = x_7$.
- (38) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} , x_{17} , x_{18} such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_8 = x_{17}$. Then $y_8 = x_8$.
- (39) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and for all x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} , x_{17} , x_{18} such that $x = \langle x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18} \rangle$ holds $y_9 = x_{18}$. Then $y_9 = x_9$.
- (40) Suppose $y \in [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:]$. Then there exist $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$ such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $x_7 \in X_7$ and $x_8 \in X_8$ and $x_9 \in X_9$ and $y = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$.
- (41) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle \in [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9 :] \text{ iff } x_1 \in X_1 \text{ and } x_2 \in X_2 \text{ and } x_3 \in X_3 \text{ and } x_4 \in X_4 \text{ and } x_5 \in X_5 \text{ and } x_6 \in X_6 \text{ and } x_7 \in X_7 \text{ and } x_8 \in X_8 \text{ and } x_9 \in X_9.$
- (42) Suppose that for every y holds $y \in Z$ iff there exist $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$ such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $x_7 \in X_7$ and $x_8 \in X_8$ and $x_9 \in X_9$ and $y = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \rangle$. Then $Z = [:X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9]$.
- (43) Suppose that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$ and $Y_1 \neq \emptyset$ and $Y_2 \neq \emptyset$ and $Y_3 \neq \emptyset$ and $Y_4 \neq \emptyset$ and $Y_5 \neq \emptyset$ and $Y_6 \neq \emptyset$ and $Y_7 \neq \emptyset$ and $Y_8 \neq \emptyset$ and $Y_9 \neq \emptyset$. Let $X_9 \neq \emptyset$ and element of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9]$ and $X_8 \neq \emptyset$ and $X_9 \neq \emptyset$.

- (44) Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9 :]$. Suppose $x \in [:A_1, A_2, A_3, A_4, A_5 A_6 A_7 A_8 A_9 :]$. Then $x_1 \in A_1$ and $x_2 \in A_2$ and $x_3 \in A_3$ and $x_4 \in A_4$ and $x_5 \in A_5$ and $x_6 \in A_6$ and $x_7 \in A_7$ and $x_8 \in A_8$ and $x_9 \in A_9$.
- (45) If $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$ and $X_3 \subseteq Y_3$ and $X_4 \subseteq Y_4$ and $X_5 \subseteq Y_5$ and $X_6 \subseteq Y_6$ and $X_7 \subseteq Y_7$ and $X_8 \subseteq Y_8$ and $X_9 \subseteq Y_9$, then $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 X_8 X_9:] \subseteq [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7 Y_8 Y_9:].$
- (46) $[:A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9]$ is a subset of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9]$.

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 5. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/mcart_2.html.
- [3] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 6. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/mcart_3.html.
- [4] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 7. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/mcart_4.html.
- [5] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 8. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/mcart_5.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/mcart_1.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received October 15, 1990

Published January 2, 2004