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Summary. This article defines ordereuttuples, projections and Cartesian products
for n= 7. We prove many theorems concerning the basic properties ofttifes and Carte-
sian products that may be utilized in several further, more challenging applications. A few of
these theorems are a strightforward consequence of the regularity axiom. The article origi-
nated as an upgrade of the articlée [5].
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The articlesl[4],[[1],16],[5], 2], and.[3] provide the notation and terminology for this paper.
For simplicity, we adopt the following rules;, X1, X2, X3, X4, Xs, Xg, X7 are setsy, v1, V2, Y3, V4,
Vs, Y6, Y7 are setsX, Xp, Xz, X3, X4, X5, Xg, X7 are setsy, Y1, Y2, Y3, Y4, Y5, Y5, Y7, Ys, Yo, Y10, Y11
are setsZ is a setxg is an element 0Ky, Xg is an element 0Ky, X109 is an element 0K3, x;1 is an
element ofXy, X12 is an element oKs, andx; 3 is an element 0Ke.
Next we state two propositions:

(1) Suppos& # 0. Then there exist¥ such that
i) YeX, and

(i) for all Y1, Y2, Y3, Ya, Y5, Y6, Y7, Yg, Yo, Y10 Ssuch thaty; € Y, andY; € Y3 andYs € Y, and
Y4 € Ys andYs € Y andYs € Y7 andY; € Yg andYs € Yg andYg € Yip andYip € Y holdsY;
missesX.

(2) Suppose« # 0. Then there exist¥ such that
(i) YeX,and

(i) forall Y1, Y, Y3, Ya, Ys, Y, Y7, Y8, Yo, Y10, Y11 Such thaty; € Y, andY, € Yz andYz € Yy
andYs; € Ys andYs € Yg andYs € Y7 andY7 € Yg andYg € Yg andYy € Y10 andYyg € Y11 and
Y11 € Y holdsY; missesX.

Let us considexy, Xz, X3, X4, X5, X, X7. The functor(xi, Xz, X3, X4, Xs, Xs, X7) is defined as follows:
(Def. 1) (x1,%2,X3,X4,%5,X6,X7) = {(X1,%2,X3,X4,X5, %6}, X7)-

We now state several propositions:

©)) (X17X27X37X47X57X67X7) = ((((((X17 X2), X3)’ X4)7 X5)7 X6)7 X7)'

G (x1, %2, X3, Xa, X5, X6, X7) = {{X1,%2, X3, Xa, X)), X6, X7).

1Supported by RPBP.1I1-24.C6.
1 The proposition (4) has been removed.
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(6) (X1,%X2,%3,%X4,%5,%6,%X7) = ((X1,X2,X3,Xa),X5,Xe,X7).
(7)  (x1,X2,X3,Xa,X5,X6,X7) = ({X1, X2, X3), X4, X5, X6, X7}
(8)  (X1,X2,X3,X4,X5,Xe,X7) = {{X1, X2),X3,X4,X5,X6,%7).

(9) If (X1,%2,X3,Xa,X5,%X6,%X7) = (Y1,Y2,¥3,¥4,Y¥5,Y6,Y7), thenxy = y; andxz = y» andxs = y3
andxs = y4 andxs = ys andxs = ye andxz = y7.

(10) If X #£ 0, then there exists such thaix € X and it is not true that there exisf, Xz, X3, X4,
Xs, Xg, X7 such thatk; € X or xz € X butx = (X1, X2, X3, X4, X5, X, X7}

Let us consideiXy, Xz, X3, X4, X5, Xs, X7. The functor]: X1, X2, X3, X4, X5 Xg X7 yields a set
and is defined by:

(Def. 2) [Xa, X2, Xa, Xa, X5 X6 X7 = [ [ X1, Xa, X3, X4, X5 X6 ], X7 1.
The following propositions are true:
(A1) [ Xq, X2, X3, Xa, X5 Xe X7l = [EFEFEXa, X2, X3, Xa ], X5, X6, X7
(13E] [ X1, X2, X3, Xa, X5 X X7 = [ [: X1, X2, X3, X4, X5, Xg, X7 ].
(24) [ X1, X2, X3, X4, X5 X X71] = [ [ X1, X2, X3, X4, X5, Xe, X7 ].
(15) [ X, Xo, X3, Xa, X5 Xg X7] = [ [ X1, X2, X3, X4, X5, Xe, X771

(16) [: X17 X2) >Q’n X47 X5 X6 X7 :} [: [: Xl; X2 :}7 >(3a x47 X57 X6 X7 }

(17) Xg#0andXz # 0andX3 # 0 andXs # 0 andXs # 0 andXs # 0 and Xy # 0 iff [ Xy, Xo,
X3, X4, X5 Xg X7 # 0.

(18) Supposel; # 0 andXy # 0 andXz # 0 and X4 # 0 andXs # 0 andXg # 0 and X7 # 0.
SUppOSG{Z Xl, Xz, X3, )(47 X5 X6 X7 Z] = [Z Yl7 Y27 Y37 Y47 Y5 Ye Y7 ] Then X1i=Y1 and Xo=Yo
andXz =Yz andXs = Yz andXs = Ys andXg = Yg and Xy = Y7.

(19) If [ Xy, X2, X3, X4, X5 X X7] # 0 and [ Xy, X2, X3, X4, X5 Xe X7 = [Y1, Y2, Y3, Ya, Y5 Y6
Y71, thenX; =Y; andXz =Y, andX3 = Yz andXs = Y4 andXs = Y5 andXs = Ys andX; = Y.

(20) IFEX, X, X, X, X X X]=[Y,Y,Y,Y,Y Y Y], thenX =Y.

In the sequeky4 denotes an element &.
One can prove the following proposition

(21) Suppose&; # 0 andX; # 0 andXz # 0 andXy # 0 andXs # 0 andXg # 0 andX7 # 0. Let
x be an element of Xy, X2, X3, X4, X5 Xg X7]. Then there existg, X9, X10, X11, X12, X13, X14
such thak = (Xg, X9, X10, X1.1, X12, X13, X14) -

Let us consideKy, Xp, X3, Xa, X5, Xg, X7. Let us assume thad £ 0 andX; £ 0 andX3 £ 0 and
X4 # 0 andXs # 0 andXs # 0 andX; # 0. Let x be an element of Xy, Xz, X3, X4, X5 Xg X73]. The
functorx; yielding an element oX; is defined as follows:

(Def. 3)  If x= {x1,X2, X3, Xa, X5, X6, X7}, thenxs = x.

The functorx, yields an element ok, and is defined by:
(Def. 4)  If x = {x1,X2, X3, Xa, X5, X6, X7}, thenxy = xz.

The functorxz yields an element of3 and is defined as follows:
(Def. 5) If x= {x1,X2, X3, X4, X5, X6, X7}, thenxs = xz.

The functorx, yields an element a4 and is defined by:

2 The proposition (12) has been removed.
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(Def. 6) If x = {x1,X2, X3, X4, X5, Xg, X7}, thenxg = xa.

The functorxs yields an element dfs and is defined by:
(Def. 7)  1f x = (X1, X2, X3, X4, X5, X6, X7), thenxs = Xs.

The functorxg yielding an element oX; is defined as follows:
(Def. 8) If x = {x1,X2, X3, X4, X5, X6, X7}, thenxs = Xe.

The functorx; yields an element oX; and is defined by:
(Def. 9)  If x = (X1, X2, X3, X4, X5, X6, X7), thenxy = X7.

We now state several propositions:

(22) Supposel; # 0 andXy £ 0 andX3 # 0 and X4 # 0 and X5 # 0 andXg # 0 and X; # 0.
Letx be an element dfXy, Xz, X3, X4, Xs X X7] and giverxy, Xo, X3, X4, X5, Xs, X7. Suppose
X = (X1,X2,X3, X4, X5,Xg,X7). Thenx; = x; andxy = X2 andxz = Xz andxq = x4 andxs = X5
andxg = Xg andxy = x7.

(23) Suppos&; # 0 andX; #£ 0 andX3 # 0 andXy £ 0 andXs # 0 andXg # 0 and X7 # 0. Let
x be an element df Xy, Xo, X3, X4, X5 Xg X7 ]. Thenx = (Xq, X2, X3, X4, X5, X6, X7).

(24) Suppose&; # 0andX; # 0 andX3 £ 0 andXy # 0 andXs # 0 andXg # 0 andX; #£ 0. Letx
be an element df X1, X2, X3, X4, X5 X X7]. Thenxy = ((((((x quasedi)1)1)1)1)1 andxe =
(((((xquasey1)1)1)1)1)2 andxs = (((((x quased1)1)1)1)2 andxs = ((((x quasehi)1)1)z
andxs = (((x qua se1)1)2 andxs = ((x qua sel)1 ), andx; = (x qua sed».

(25) Suppose&; C [Z X1, X2, X3, Xa, X5 Xg X7 Z] orX; C [Z X2, X3, Xg, X5, Xg X7 X1 Z] orX; C [Z X3,
Xa, X5, Xg, X7 X1 X2] or Xy C [ Xa, Xs, Xg, X7, Xp X2 X3] 0r X C [ Xs, Xe, X7, X1, X2 X3 X4 ]
or X1 C [ Xe, X7, X1, X2, X3 X4 X5] or X1 C [ X7, X1, X2, X3, X4 X5 Xg]. ThenXy = 0.

(26) Supposé X1, Xo, X3, Xa, X5 Xg X7] meets: Y1, Y2, Y3, Ya, Y5 Y5 Y7 ]. ThenX; meetsy; and
Xo meetsY, and X3 meetsyz and Xy meetsy, andXs meetsYs andXg meetsYs andX; meets
Ys.

(27) [: {Xl}ﬂ {XZ}’ {)(3}7 {X4}’ {X5} {X5} {X7} :] = {(X17X27X3’X4’X5’X6’X7)}'

For simplicity, we adopt the following rulegy; denotes a subset of, A, denotes a subset of
Xo, Az denotes a subset &, A4 denotes a subset o, As denotes a subset 0%, Ag denotes a
subset 0fXs, A7 denotes a subset &, andx denotes an element iy, Xo, X3, Xa, Xs X X7 1.

One can prove the following propositions:

(28) Suppos&; # 0 andX; # 0 andX3 # 0 andXy # 0 andXs # 0 andXg # 0 andX7 # 0. Let
givenxy, Xz, X3, Xa, X5, Xg, X7. SUPPOSE&X = (X1, X2, X3, X4, X5, X6, X7). Thenxy = x3 andxz = x»
andxz = X3 andxs = X4 andxs = x5 andxg = Xg andxy = xy.

(29) Suppos&; # 0 andX; # 0 andXz # 0 and X4 # 0 andXs # 0 andXs # 0 andX7 # 0 and
for all Xg, Xo, X10, X11, X12, X13, X14 SUCh thaix = (Xg, X9, X10, X11, X12, X13, X14) holdsy; = xg.
Thenyl = X3.

(30) Suppos&i # 0 andX; # 0 andXz # 0 and Xy # 0 andXs # 0 andXs # 0 andX7 # 0 and

for all xg, X9, X10, X11, X12, X13, X14 SUch thatx = (Xg, X9, X10, X11, X12, X13, X14) holdsy, = xg.
Theny, = Xo.

(31) Suppos&; # 0 andX; # 0 andXz # 0 andX4 # 0 andXs # 0 andXg = 0 andX7 # 0 and
for all xg, X9, X10, X11, X12, X13, X14 SUCh thak = (Xg, X9, X10, X11, X12, X13, X14) holdSy3 = X10.
Thenys; = X3.

(32) Suppos&; # 0 andX; # 0 andXz # 0 andX4 # 0 andXs # 0 andXg # 0 andX7 # 0 and
for all xg, X9, X10, X11, X12, X13, X14 SUCh thatx = (Xg, X9, X10,X11, X12, X13, X14) holdsys = xq31.
Theny, = Xa.
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(33) Suppos&; # 0 andX; # 0 andXz # 0 andX4 # 0 andXs # 0 andXg # 0 andX7 # 0 and
for all Xg, X9, X10, X11, X12, X13, X14 Such that = (xg, X9, X10, X11, X12, X13, X14) holdsys = X12.
Theny5 = Xs5.

(34) Suppos&; # 0 andXz # 0 andX3 #£ 0 andXy # 0 andXs # 0 andXg # 0 andX; # 0 and
for all xg, X9, X10, X11, X12, X13, X14 SUCh thatx = (Xg, X9, X10,X11, X12, X13, X14) holdsys = X13.
Thenyg = Xs.

(35) Suppos&; # 0 andX; # 0 andXz # 0 andX4 # 0 andXs # 0 andXs # 0 andX7 # 0 and
for all xg, X9, X10, X11, X12, X13, X14 SUch thax = (xg, X9, X10, X11, X12, X13, X14) holdsy7 = X14.
Theny; = x7.

(36) Suppose € [ X1, X2, X3, Xa, X5 Xg X77]. Then there exiski, X2, X3, X4, X5, Xg, X7 Such
thatx; € X; andx, € X, andxz € Xz andxy € X4 andxs € Xs andxg € Xg andxy € X7 and
y= (X17X27X37X47X57X67X7)-

(37)  (X1,%2,X3,X4,X5,%6,X7) € [ X1, X2, X3, X4, X5 X X7 iff X1 € X1 andxz € Xz andxz € X3
andxs € X4 andxs € Xs andxg € Xg andx; € X;.

(38) Suppose that for eveny holdsy € Z iff there existxi, X2, X3, X4, X5, Xg, X7 such that
X1 € X3 andxz € Xp andxs € Xz andxq € X4 andxs € X5 andxg € Xg andx; € X7 and
Y = (X1,X2,X3,X4,X5, X6, X7). ThenZ = [ Xy, Xz, X3, X4, X5 Xp X7 1.

(39) Suppos&; # 0 andX; # 0 andXs # 0 and Xy # 0 andXs # 0 andXs # 0 andX7 # 0 and
Y1 # 0 andY; £ 0 andYz # 0 andY,; £ 0 andYs # 0 andYg # 0 andY; £ 0. Letx be an element
of [ X1, X2, X3, X4, X5 Xs X7 andy be an element dfYi, Yz, Y3, Ya, Y5 Ys Y7 ]. Supposex=y.
Thenx; = y1 andx; =y, andxs = y3 andxyq = y4 andxs = Y5 andxg = Yg andx; = y7.

(40) Letxbe anelement dfXs, Xp, X3, Xa, X5 Xg X7]. Suppose € [ A, Ay, Az, Ag, As As A7 1.
Thenx; € A1 andxo € Ay andxz € Az andxs € A4 andxs € As andXg € Ag andxy € As.

(41) If X3 CYrandXy CYs andXz C Yz andXs C Ya andXs C Ys andXg C Y andX7 C Yo, then
[ X1, X2, X3, X4, X5 X6 X7] C [ Y1, Y2, Y3, Ya, Y5 Y6 Y7 1.

(42) [Z Ag, Ao, Az, As, As A A7 Z] is a subset OF X1, X2, X3, X4, X5 Xg X7 ]
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