N-Tuples and Cartesian Products for $n = 7^1$

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. This article defines ordered n-tuples, projections and Cartesian products for n = 7. We prove many theorems concerning the basic properties of the n-tuples and Cartesian products that may be utilized in several further, more challenging applications. A few of these theorems are a strightforward consequence of the regularity axiom. The article originated as an upgrade of the article [5].

MML Identifier: MCART_4.

WWW: http://mizar.org/JFM/Vol2/mcart_4.html

The articles [4], [1], [6], [5], [2], and [3] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: x, x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 are sets, y, y_1 , y_2 , y_3 , y_4 , y_5 , y_6 , y_7 are sets, X, X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 are sets, Y, Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} are sets, Z is a set, X_8 is an element of X_1 , X_9 is an element of X_2 , X_{10} is an element of X_3 , X_{11} is an element of X_4 , X_{12} is an element of X_5 , and X_{13} is an element of X_6 .

Next we state two propositions:

- (1) Suppose $X \neq \emptyset$. Then there exists Y such that
- (i) $Y \in X$, and
- (ii) for all Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y_8$ and $Y_8 \in Y_9$ and $Y_9 \in Y_{10}$ and $Y_{10} \in Y$ holds Y_1 misses X.
- (2) Suppose $X \neq \emptyset$. Then there exists Y such that
- (i) $Y \in X$, and
- (ii) for all Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y_8$ and $Y_8 \in Y_9$ and $Y_9 \in Y_{10}$ and $Y_{10} \in Y_{11}$ and $Y_{11} \in Y$ holds Y_1 misses X.

Let us consider $x_1, x_2, x_3, x_4, x_5, x_6, x_7$. The functor $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$ is defined as follows:

(Def. 1)
$$\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \langle \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle, x_7 \rangle$$
.

We now state several propositions:

$$(3) \quad \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \langle \langle \langle \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle, x_5 \rangle, x_6 \rangle, x_7 \rangle.$$

$$(5)^{1} \quad \langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \rangle = \langle \langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \rangle, x_{6}, x_{7} \rangle.$$

¹Supported by RPBP.III-24.C6.

¹ The proposition (4) has been removed.

- (6) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \langle \langle x_1, x_2, x_3, x_4 \rangle, x_5, x_6, x_7 \rangle$.
- (7) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \langle \langle x_1, x_2, x_3 \rangle, x_4, x_5, x_6, x_7 \rangle$.
- (8) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \langle \langle x_1, x_2 \rangle, x_3, x_4, x_5, x_6, x_7 \rangle$.
- (9) If $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \langle y_1, y_2, y_3, y_4, y_5, y_6, y_7 \rangle$, then $x_1 = y_1$ and $x_2 = y_2$ and $x_3 = y_3$ and $x_4 = y_4$ and $x_5 = y_5$ and $x_6 = y_6$ and $x_7 = y_7$.
- (10) If $X \neq \emptyset$, then there exists x such that $x \in X$ and it is not true that there exist $x_1, x_2, x_3, x_4, x_5, x_6, x_7$ such that $x_1 \in X$ or $x_2 \in X$ but $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 . The functor $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:]$ yields a set and is defined by:

(Def. 2) $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:] = [:[:X_1, X_2, X_3, X_4, X_5 X_6:], X_7:].$

The following propositions are true:

- $(11) \quad [:X_1, X_2, X_3, X_4, X_5 X_6 X_7:] = [:[:[:::::X_1, X_2:], X_3:], X_4:], X_5:], X_6:], X_7:].$
- $(13)^2 \quad [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 :] = [:[:X_1, X_2, X_3, X_4, X_5 :], X_6, X_7 :].$
- $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:] = [:[:X_1, X_2, X_3, X_4:], X_5, X_6, X_7:].$
- $[X_1, X_2, X_3, X_4, X_5 X_6 X_7:] = [:[:X_1, X_2, X_3:], X_4, X_5, X_6, X_7:].$
- (16) $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7:] = [:[:X_1, X_2:], X_3, X_4, X_5, X_6, X_7:].$
- (17) $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ iff $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7:] \neq \emptyset$.
- (18) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Suppose $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 :] = [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7 :]$. Then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$ and $X_6 = Y_6$ and $X_7 = Y_7$.
- (19) If $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:] \neq \emptyset$ and $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:] = [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7:]$, then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$ and $X_6 = Y_6$ and $X_7 = Y_7$.
- (20) If [:X, X, X, X, X, X X X :] = [:Y, Y, Y, Y, Y, Y, Y, Y, Y], then X = Y.

In the sequel x_{14} denotes an element of X_7 . One can prove the following proposition

(21) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:]$. Then there exist $x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$ such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 . Let us assume that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Let $X_7 \neq \emptyset$ be an element of $[X_1, X_2, X_3, X_4, X_5, X_6, X_7]$. The functor X_1 yielding an element of X_1 is defined as follows:

(Def. 3) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$, then $x_1 = x_1$.

The functor x_2 yields an element of X_2 and is defined by:

(Def. 4) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$, then $x_2 = x_2$.

The functor x_3 yields an element of X_3 and is defined as follows:

(Def. 5) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$, then $x_3 = x_3$.

The functor x_4 yields an element of X_4 and is defined by:

² The proposition (12) has been removed.

(Def. 6) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$, then $x_4 = x_4$.

The functor x_5 yields an element of X_5 and is defined by:

(Def. 7) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$$
, then $x_5 = x_5$.

The functor x_6 yielding an element of X_6 is defined as follows:

(Def. 8) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$$
, then $x_6 = x_6$.

The functor x_7 yields an element of X_7 and is defined by:

(Def. 9) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$$
, then $x_7 = x_7$.

We now state several propositions:

- (22) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7:]$ and given $x_1, x_2, x_3, x_4, x_5, x_6, x_7$. Suppose $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$. Then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$ and $x_6 = x_6$ and $x_7 = x_7$.
- (23) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7]$. Then $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$.
- (24) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:]$. Then $x_1 = (((((x \operatorname{\mathbf{qua}} \operatorname{set})_1)_1)_1)_1)_1$ and $x_2 = (((((x \operatorname{\mathbf{qua}} \operatorname{set})_1)_1)_1)_1)_2$ and $x_3 = ((((x \operatorname{\mathbf{qua}} \operatorname{set})_1)_1)_1)_1)_2$ and $x_4 = (((x \operatorname{\mathbf{qua}} \operatorname{set})_1)_1)_1)_2$ and $x_5 = (((x \operatorname{\mathbf{qua}} \operatorname{set})_1)_1)_2$ and $x_6 = ((x \operatorname{\mathbf{qua}} \operatorname{set})_1)_2$ and $x_7 = (x \operatorname{\mathbf{qua}} \operatorname{set})_2$.
- (25) Suppose $X_1 \subseteq [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 :]$ or $X_1 \subseteq [:X_2, X_3, X_4, X_5, X_6 X_7 X_1 :]$ or $X_1 \subseteq [:X_3, X_4, X_5, X_6, X_7 X_1 X_2 :]$ or $X_1 \subseteq [:X_4, X_5, X_6, X_7, X_1 X_2 X_3 :]$ or $X_1 \subseteq [:X_5, X_6, X_7, X_1, X_2 X_3 X_4 :]$ or $X_1 \subseteq [:X_6, X_7, X_1, X_2, X_3 X_4 X_5 :]$ or $X_1 \subseteq [:X_7, X_1, X_2, X_3, X_4 X_5 :]$. Then $X_1 = \emptyset$.
- (26) Suppose $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:]$ meets $[:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7:]$. Then X_1 meets Y_1 and X_2 meets Y_2 and X_3 meets Y_3 and X_4 meets Y_4 and X_5 meets Y_5 and X_6 meets Y_6 and X_7 meets Y_7 .
- $(27) \quad [\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}] = \{\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle\}.$

For simplicity, we adopt the following rules: A_1 denotes a subset of X_1 , A_2 denotes a subset of X_2 , A_3 denotes a subset of X_3 , A_4 denotes a subset of X_4 , A_5 denotes a subset of X_5 , A_6 denotes a subset of X_6 , A_7 denotes a subset of X_7 , and X_8 denotes an element of $[X_1, X_2, X_3, X_4, X_5, X_6, X_7]$.

One can prove the following propositions:

- (28) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$. Let given $x_1, x_2, x_3, x_4, x_5, x_6, x_7$. Suppose $x = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$. Then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$ and $x_6 = x_6$ and $x_7 = x_7$.
- (29) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all x_8 , x_9 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_1 = x_8$. Then $y_1 = x_1$.
- (30) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all x_8 , x_9 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_2 = x_9$. Then $y_2 = x_2$.
- (31) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all x_8 , x_9 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_3 = x_{10}$. Then $y_3 = x_3$.
- (32) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all x_8 , x_9 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_4 = x_{11}$. Then $y_4 = x_4$.

- (33) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all x_8 , x_9 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_5 = x_{12}$. Then $y_5 = x_5$.
- (34) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all $x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$ such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_6 = x_{13}$. Then $y_6 = x_6$.
- (35) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and for all $x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$ such that $x = \langle x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14} \rangle$ holds $y_7 = x_{14}$. Then $y_7 = x_7$.
- (36) Suppose $y \in [:X_1, X_2, X_3, X_4, X_5 X_6 X_7 :]$. Then there exist $x_1, x_2, x_3, x_4, x_5, x_6, x_7$ such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $x_7 \in X_7$ and $y = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$.
- (37) $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle \in [:X_1, X_2, X_3, X_4, X_5 X_6 X_7:]$ iff $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $x_7 \in X_7$.
- (38) Suppose that for every y holds $y \in Z$ iff there exist $x_1, x_2, x_3, x_4, x_5, x_6, x_7$ such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $x_7 \in X_7$ and $y = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle$. Then $Z = [:X_1, X_2, X_3, X_4, X_5, X_6, X_7]$.
- (39) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $X_7 \neq \emptyset$ and $Y_1 \neq \emptyset$ and $Y_2 \neq \emptyset$ and $Y_3 \neq \emptyset$ and $Y_4 \neq \emptyset$ and $Y_5 \neq \emptyset$ and $Y_6 \neq \emptyset$ and $Y_7 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7:]$ and y be an element of $[:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6 Y_7:]$. Suppose x = y. Then $x_1 = y_1$ and $x_2 = y_2$ and $x_3 = y_3$ and $x_4 = y_4$ and $x_5 = y_5$ and $x_6 = y_6$ and $x_7 = y_7$.
- (40) Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6 X_7 :]$. Suppose $x \in [:A_1, A_2, A_3, A_4, A_5 A_6 A_7 :]$. Then $x_1 \in A_1$ and $x_2 \in A_2$ and $x_3 \in A_3$ and $x_4 \in A_4$ and $x_5 \in A_5$ and $x_6 \in A_6$ and $x_7 \in A_7$.
- (41) If $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$ and $X_3 \subseteq Y_3$ and $X_4 \subseteq Y_4$ and $X_5 \subseteq Y_5$ and $X_6 \subseteq Y_6$ and $X_7 \subseteq Y_7$, then $[X_1, X_2, X_3, X_4, X_5, X_6, X_7] \subseteq [X_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7].$
- (42) $[:A_1, A_2, A_3, A_4, A_5, A_6, A_7:]$ is a subset of $[:X_1, X_2, X_3, X_4, X_5, X_6, X_7:]$.

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 5. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/mcart 2.html.
- [3] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 6. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/mcart_3.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html.
- [6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received October 15, 1990

Published January 2, 2004