N-Tuples and Cartesian Products for $n = 6^1$

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. This article defines ordered n-tuples, projections and Cartesian products for n = 6. We prove many theorems concerning the basic properties of the n-tuples and Cartesian products that may be utilized in several further, more challenging applications. A few of these theorems are a strightforward consequence of the regularity axiom. The article originated as an upgrade of the article [4].

MML Identifier: MCART_3.

WWW: http://mizar.org/JFM/Vol2/mcart_3.html

The articles [3], [1], [5], [4], and [2] provide the notation and terminology for this paper.

For simplicity, we follow the rules: v, z, x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , y_1 , y_2 , y_3 , y_4 , y_5 , y_6 , X, X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , Y, Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Z denote sets, x_7 denotes an element of X_1 , x_8 denotes an element of X_2 , x_9 denotes an element of X_3 , x_{10} denotes an element of X_4 , and x_{11} denotes an element of X_5 .

Next we state two propositions:

- (1) Suppose $X \neq \emptyset$. Then there exists Y such that
- (i) $Y \in X$, and
- (ii) for all $Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8$ such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y_8$ and $Y_8 \in Y$ holds Y_1 misses X.
- (2) Suppose $X \neq \emptyset$. Then there exists Y such that
- (i) $Y \in X$, and
- (ii) for all $Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8, Y_9$ such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y_8$ and $Y_8 \in Y_9$ and $Y_9 \in Y$ holds Y_1 misses X.

Let us consider $x_1, x_2, x_3, x_4, x_5, x_6$. The functor $(x_1, x_2, x_3, x_4, x_5, x_6)$ is defined as follows:

(Def. 1)
$$\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle = \langle \langle x_1, x_2, x_3, x_4, x_5 \rangle, x_6 \rangle$$
.

We now state several propositions:

(3)
$$\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle = \langle \langle \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle, x_5 \rangle, x_6 \rangle$$
.

$$(5)^{1} \quad \langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \rangle = \langle \langle x_{1}, x_{2}, x_{3}, x_{4} \rangle, x_{5}, x_{6} \rangle.$$

(6)
$$\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle = \langle \langle x_1, x_2, x_3 \rangle, x_4, x_5, x_6 \rangle.$$

(7)
$$\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle = \langle \langle x_1, x_2 \rangle, x_3, x_4, x_5, x_6 \rangle$$
.

¹Supported by RPBP.III-24.C6.

¹ The proposition (4) has been removed.

- (8) If $\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle = \langle y_1, y_2, y_3, y_4, y_5, y_6 \rangle$, then $x_1 = y_1$ and $x_2 = y_2$ and $x_3 = y_3$ and $x_4 = y_4$ and $x_5 = y_5$ and $x_6 = y_6$.
- (9) If $X \neq \emptyset$, then there exists v such that $v \in X$ and it is not true that there exist $x_1, x_2, x_3, x_4, x_5, x_6$ such that $x_1 \in X$ or $x_2 \in X$ but $v = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , X_6 . The functor $[:X_1, X_2, X_3, X_4, X_5 X_6:]$ yields a set and is defined as follows:

(Def. 2)
$$[:X_1, X_2, X_3, X_4, X_5 X_6:] = [:[:X_1, X_2, X_3, X_4, X_5:], X_6:].$$

One can prove the following propositions:

$$[X_1, X_2, X_3, X_4, X_5, X_6] = [:[::[::X_1, X_2:], X_3:], X_4:], X_5:], X_6:].$$

$$(12)^2$$
 $[:X_1, X_2, X_3, X_4, X_5 X_6:] = [:[:X_1, X_2, X_3, X_4:], X_5, X_6:].$

(13)
$$[:X_1, X_2, X_3, X_4, X_5 X_6:] = [:[:X_1, X_2, X_3:], X_4, X_5, X_6:].$$

$$(14) \quad [:X_1, X_2, X_3, X_4, X_5, X_6:] = [:[:X_1, X_2:], X_3, X_4, X_5, X_6:].$$

- (15) $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ iff $[:X_1, X_2, X_3, X_4, X_5 X_6:] \neq \emptyset$.
- (16) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$. If $[:X_1, X_2, X_3, X_4, X_5 X_6:] = [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6:]$, then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$ and $X_6 = Y_6$.
- (17) If $[:X_1, X_2, X_3, X_4, X_5 X_6:] \neq \emptyset$ and $[:X_1, X_2, X_3, X_4, X_5 X_6:] = [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6:]$, then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$ and $X_6 = Y_6$.
- (18) If [:X, X, X, X, X, X :] = [:Y, Y, Y, Y, Y, Y :], then X = Y.

In the sequel x_{12} denotes an element of X_6 .

We now state the proposition

(19) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6:]$. Then there exist $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , X_6 . Let us assume that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$. Let X_1 be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6:]$. The functor X_1 yielding an element of X_1 is defined as follows:

(Def. 3) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$
, then $x_1 = x_1$.

The functor x_2 yields an element of X_2 and is defined as follows:

(Def. 4) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$
, then $x_2 = x_2$.

The functor x_3 yielding an element of X_3 is defined as follows:

(Def. 5) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$
, then $x_3 = x_3$.

The functor x_4 yielding an element of X_4 is defined as follows:

(Def. 6) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$
, then $x_4 = x_4$.

The functor x_5 yielding an element of X_5 is defined as follows:

(Def. 7) If
$$x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$
, then $x_5 = x_5$.

The functor x_6 yielding an element of X_6 is defined by:

² The proposition (11) has been removed.

(Def. 8) If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$, then $x_6 = x_6$.

We now state several propositions:

- (20) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6:]$ and given $x_1, x_2, x_3, x_4, x_5, x_6$. If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$, then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$ and $x_6 = x_6$.
- (21) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$, then for every element x of $[:X_1, X_2, X_3, X_4, X_5, X_6:]$ holds $x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$.
- (22) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5, X_6:]$. Then
 - (i) $x_1 = (((((x \text{ qua set})_1)_1)_1)_1)_1,$
- (ii) $x_2 = (((((x \text{ qua set})_1)_1)_1)_1)_2,$
- (iii) $x_3 = ((((x \text{ qua set})_1)_1)_1)_2,$
- (iv) $x_4 = (((x \text{ qua set})_1)_1)_2,$
- (v) $x_5 = ((x \text{ qua set})_1)_2$, and
- (vi) $x_6 = (x \text{ qua set})_2$.
- (23) If $X_1 \subseteq [:X_1, X_2, X_3, X_4, X_5, X_6:]$ or $X_1 \subseteq [:X_2, X_3, X_4, X_5, X_6, X_1:]$ or $X_1 \subseteq [:X_3, X_4, X_5, X_6, X_1, X_2:]$ or $X_1 \subseteq [:X_4, X_5, X_6, X_1, X_2, X_3:]$ or $X_1 \subseteq [:X_5, X_6, X_1, X_2, X_3, X_4:]$ or $X_1 \subseteq [:X_6, X_1, X_2, X_3, X_4:]$ or $X_1 \subseteq [:X_6, X_1, X_2, X_3, X_4:]$ or $X_1 \subseteq [:X_6, X_1, X_2, X_3:]$ or $X_1 \subseteq [:X_6, X_1, X_2:]$ or $X_1 \subseteq [:X_6, X_1, X_2:]$
- (24) Suppose $[:X_1, X_2, X_3, X_4, X_5 X_6:]$ meets $[:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6:]$. Then X_1 meets Y_1 and X_2 meets Y_2 and X_3 meets Y_3 and X_4 meets Y_4 and X_5 meets Y_5 and X_6 meets Y_6 .
- $(25) \quad [\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}] = \{\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle\}.$

For simplicity, we use the following convention: A_1 is a subset of X_1 , A_2 is a subset of X_2 , A_3 is a subset of X_3 , A_4 is a subset of X_4 , A_5 is a subset of X_5 , A_6 is a subset of X_6 , and X_6 is an element of $[X_1, X_2, X_3, X_4, X_5, X_6]$.

The following propositions are true:

- (26) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$. Let given x_1 , x_2, x_3, x_4, x_5, x_6 . If $x = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$, then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$ and $x_6 = x_6$.
- (27) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and for all $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$ holds $y_1 = x_7$, then $y_1 = x_1$.
- (28) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and for all $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$ holds $y_2 = x_8$, then $y_2 = x_2$.
- (29) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and for all $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$ holds $y_3 = x_9$, then $y_3 = x_3$.
- (30) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and for all $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$ holds $y_4 = x_{10}$, then $y_4 = x_4$.
- (31) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and for all $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$ holds $y_5 = x_{11}$, then $y_5 = x_5$.
- (32) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and for all $x_7, x_8, x_9, x_{10}, x_{11}, x_{12}$ such that $x = \langle x_7, x_8, x_9, x_{10}, x_{11}, x_{12} \rangle$ holds $y_6 = x_{12}$, then $y_6 = x_6$.
- (33) If $z \in [:X_1, X_2, X_3, X_4, X_5 X_6:]$, then there exist $x_1, x_2, x_3, x_4, x_5, x_6$ such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $z = (x_1, x_2, x_3, x_4, x_5, x_6)$.

- (34) $\langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle \in [:X_1, X_2, X_3, X_4, X_5 X_6:]$ iff $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$.
- (35) Suppose that for every z holds $z \in Z$ iff there exist $x_1, x_2, x_3, x_4, x_5, x_6$ such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $x_6 \in X_6$ and $z = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$. Then $Z = [:X_1, X_2, X_3, X_4, X_5, X_6:]$.
- (36) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $X_6 \neq \emptyset$ and $Y_1 \neq \emptyset$ and $Y_2 \neq \emptyset$ and $Y_3 \neq \emptyset$ and $Y_4 \neq \emptyset$ and $Y_5 \neq \emptyset$ and $Y_6 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5 X_6:]$ and y be an element of $[:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6:]$. If x = y, then $x_1 = y_1$ and $x_2 = y_2$ and $x_3 = y_3$ and $x_4 = y_4$ and $x_5 = y_5$ and $x_6 = y_6$.
- (37) For every element x of $[:X_1, X_2, X_3, X_4, X_5 X_6:]$ such that $x \in [:A_1, A_2, A_3, A_4, A_5 A_6:]$ holds $x_1 \in A_1$ and $x_2 \in A_2$ and $x_3 \in A_3$ and $x_4 \in A_4$ and $x_5 \in A_5$ and $x_6 \in A_6$.
- (38) If $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$ and $X_3 \subseteq Y_3$ and $X_4 \subseteq Y_4$ and $X_5 \subseteq Y_5$ and $X_6 \subseteq Y_6$, then $[:X_1, X_2, X_3, X_4, X_5 X_6:] \subseteq [:Y_1, Y_2, Y_3, Y_4, Y_5 Y_6:]$.
- (39) $[:A_1, A_2, A_3, A_4, A_5, A_6:]$ is a subset of $[:X_1, X_2, X_3, X_4, X_5, X_6:]$.

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_
- [2] Michał Muzalewski and Wojciech Skaba. n-tuples and Cartesian products for n = 5. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/moart_2.html.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [4] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/mcart 1.html.
- $[5] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \enskip \textbf{http://mizar.org/JFM/Vol1/subset_1.html.}$

Received October 15, 1990

Published January 2, 2004