N-Tuples and Cartesian Products for $n = 5^1$

Michał Muzalewski Warsaw University Białystok

Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. This article defines ordered n-tuples, projections and Cartesian products for n = 5. We prove many theorems concerning the basic properties of the n-tuples and Cartesian products that may be utilized in several further, more challenging applications. A few of these theorems are a strightforward consequence of the regularity axiom. The article originated as an upgrade of the article [3].

MML Identifier: MCART_2.

WWW: http://mizar.org/JFM/Vol2/mcart_2.html

The articles [2], [1], [4], and [3] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, x_1 , x_2 , x_3 , x_4 , x_5 , y, y_1 , y_2 , y_3 , y_4 , y_5 , X, X_1 , X_2 , X_3 , X_4 , X_5 , Y, Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , Y_7 , Z are sets, x_6 is an element of X_1 , x_7 is an element of X_2 , x_8 is an element of X_3 , x_9 is an element of X_4 , and x_{10} is an element of X_5 .

Next we state two propositions:

- (1) Suppose $X \neq \emptyset$. Then there exists Y such that $Y \in X$ and for all $Y_1, Y_2, Y_3, Y_4, Y_5, Y_6$ such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y$ holds Y_1 misses X.
- (2) Suppose $X \neq \emptyset$. Then there exists Y such that $Y \in X$ and for all $Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7$ such that $Y_1 \in Y_2$ and $Y_2 \in Y_3$ and $Y_3 \in Y_4$ and $Y_4 \in Y_5$ and $Y_5 \in Y_6$ and $Y_6 \in Y_7$ and $Y_7 \in Y$ holds Y_1 misses X.

Let us consider x_1, x_2, x_3, x_4, x_5 . The functor $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ is defined as follows:

(Def. 1)
$$\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle \langle x_1, x_2, x_3, x_4 \rangle, x_5 \rangle$$
.

We now state several propositions:

(3)
$$\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle, x_5 \rangle$$
.

$$(5)^{1}$$
 $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle \langle x_1, x_2, x_3 \rangle, x_4, x_5 \rangle.$

(6)
$$\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle \langle x_1, x_2 \rangle, x_3, x_4, x_5 \rangle$$
.

- (7) If $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle y_1, y_2, y_3, y_4, y_5 \rangle$, then $x_1 = y_1$ and $x_2 = y_2$ and $x_3 = y_3$ and $x_4 = y_4$ and $x_5 = y_5$.
- (8) If $X \neq \emptyset$, then there exists x such that $x \in X$ and it is not true that there exist x_1, x_2, x_3, x_4, x_5 such that $x_1 \in X$ or $x_2 \in X$ but $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$.

1

¹Supported by RPBP.III-24.C6.

¹ The proposition (4) has been removed.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 . The functor $[:X_1, X_2, X_3, X_4, X_5:]$ yields a set and is defined as follows:

(Def. 2)
$$[:X_1, X_2, X_3, X_4, X_5:] = [:[:X_1, X_2, X_3, X_4:], X_5:].$$

Next we state several propositions:

- (9) $[:X_1, X_2, X_3, X_4, X_5:] = [:[:::X_1, X_2:], X_3:], X_4:], X_5:].$
- $(11)^2$ [: X_1, X_2, X_3, X_4, X_5 :] = [: [: X_1, X_2, X_3 :], X_4, X_5 :].
- (12) $[:X_1, X_2, X_3, X_4, X_5:] = [:[:X_1, X_2:], X_3, X_4, X_5:].$
- (13) $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ iff $[:X_1, X_2, X_3, X_4, X_5:] \neq \emptyset$.
- (14) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$, then if $[:X_1, X_2, X_3, X_4, X_5:] = [:Y_1, Y_2, Y_3, Y_4, Y_5:]$, then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$.
- (15) If $[:X_1, X_2, X_3, X_4, X_5:] \neq \emptyset$ and $[:X_1, X_2, X_3, X_4, X_5:] = [:Y_1, Y_2, Y_3, Y_4, Y_5:]$, then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$.
- (16) If [:X, X, X, X, X:] = [:Y, Y, Y, Y, Y:], then X = Y.
- (17) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$, then for every element x of $[:X_1, X_2, X_3, X_4, X_5:]$ there exist $x_6, x_7, x_8, x_9, x_{10}$ such that $x = \langle x_6, x_7, x_8, x_9, x_{10} \rangle$.

Let us consider X_1, X_2, X_3, X_4, X_5 . Let us assume that $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$. Let X be an element of $[:X_1, X_2, X_3, X_4, X_5:]$. The functor X_1 yields an element of X_1 and is defined by:

(Def. 3) If
$$x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$$
, then $x_1 = x_1$.

The functor x_2 yields an element of X_2 and is defined by:

(Def. 4) If
$$x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$$
, then $x_2 = x_2$.

The functor x_3 yielding an element of X_3 is defined as follows:

(Def. 5) If
$$x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$$
, then $x_3 = x_3$.

The functor x_4 yielding an element of X_4 is defined as follows:

(Def. 6) If
$$x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$$
, then $x_4 = x_4$.

The functor x_5 yields an element of X_5 and is defined by:

(Def. 7) If
$$x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$$
, then $x_5 = x_5$.

The following propositions are true:

- (18) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5:]$ and given x_1, x_2, x_3, x_4, x_5 . If $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$, then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$.
- (19) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$, then for every element x of $[:X_1, X_2, X_3, X_4, X_5:]$ holds $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$.
- (20) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$. Let x be an element of $[:X_1, X_2, X_3, X_4, X_5:]$. Then $x_1 = ((((x \text{ qua set})_1)_1)_1)_1$ and $x_2 = ((((x \text{ qua set})_1)_1)_2)_2$ and $x_3 = (((x \text{ qua set})_1)_1)_2$ and $x_4 = ((x \text{ qua set})_1)_2$ and $x_5 = (x \text{ qua set})_2$.
- (21) If $X_1 \subseteq [:X_1, X_2, X_3, X_4, X_5:]$ or $X_1 \subseteq [:X_2, X_3, X_4, X_5, X_1:]$ or $X_1 \subseteq [:X_3, X_4, X_5, X_1, X_2:]$ or $X_1 \subseteq [:X_4, X_5, X_1, X_2, X_3:]$ or $X_1 \subseteq [:X_5, X_1, X_2, X_3, X_4:]$, then $X_1 = \emptyset$.

² The proposition (10) has been removed.

- (22) If $[:X_1, X_2, X_3, X_4, X_5:]$ meets $[:Y_1, Y_2, Y_3, Y_4, Y_5:]$, then X_1 meets Y_1 and X_2 meets Y_2 and X_3 meets Y_3 and X_4 meets Y_4 and X_5 meets Y_5 .
- $(23) \quad [:\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}:] = \{\langle x_1, x_2, x_3, x_4, x_5 \rangle\}.$

For simplicity, we use the following convention: A_1 is a subset of X_1 , A_2 is a subset of X_2 , A_3 is a subset of X_3 , A_4 is a subset of X_4 , X_5 is a subset of X_5 , and X_5 is an element of $[:X_1, X_2, X_3, X_4, X_5:]$. One can prove the following propositions:

- (24) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$. Let given x_1, x_2, x_3, x_4, x_5 . If $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$, then $x_1 = x_1$ and $x_2 = x_2$ and $x_3 = x_3$ and $x_4 = x_4$ and $x_5 = x_5$.
- (25) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and for all $x_6, x_7, x_8, x_9, x_{10}$ such that $x = \langle x_6, x_7, x_8, x_9, x_{10} \rangle$ holds $y_1 = x_6$, then $y_1 = x_1$.
- (26) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and for all $x_6, x_7, x_8, x_9, x_{10}$ such that $x = \langle x_6, x_7, x_8, x_9, x_{10} \rangle$ holds $y_2 = x_7$, then $y_2 = x_2$.
- (27) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and for all $x_6, x_7, x_8, x_9, x_{10}$ such that $x = \langle x_6, x_7, x_8, x_9, x_{10} \rangle$ holds $y_3 = x_8$, then $y_3 = x_3$.
- (28) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and for all $x_6, x_7, x_8, x_9, x_{10}$ such that $x = \langle x_6, x_7, x_8, x_9, x_{10} \rangle$ holds $y_4 = x_9$, then $y_4 = x_4$.
- (29) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and for all $x_6, x_7, x_8, x_9, x_{10}$ such that $x = \langle x_6, x_7, x_8, x_9, x_{10} \rangle$ holds $y_5 = x_{10}$, then $y_5 = x_5$.
- (30) If $y \in [:X_1, X_2, X_3, X_4, X_5:]$, then there exist x_1, x_2, x_3, x_4, x_5 such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $y = \langle x_1, x_2, x_3, x_4, x_5 \rangle$.
- (31) $\langle x_1, x_2, x_3, x_4, x_5 \rangle \in [:X_1, X_2, X_3, X_4, X_5:]$ iff $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$.
- (32) Suppose that for every y holds $y \in Z$ iff there exist x_1, x_2, x_3, x_4, x_5 such that $x_1 \in X_1$ and $x_2 \in X_2$ and $x_3 \in X_3$ and $x_4 \in X_4$ and $x_5 \in X_5$ and $y = \langle x_1, x_2, x_3, x_4, x_5 \rangle$. Then $Z = [:X_1, X_2, X_3, X_4, X_5:]$.
- (33) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$ and $X_5 \neq \emptyset$ and $Y_1 \neq \emptyset$ and $Y_2 \neq \emptyset$ and $Y_3 \neq \emptyset$ and $Y_4 \neq \emptyset$ and $Y_5 \neq \emptyset$. Let X be an element of $[:X_1, X_2, X_3, X_4, X_5:]$ and Y be an element of $[:Y_1, Y_2, Y_3, Y_4, Y_5:]$. If X = Y, then $X_1 = Y_1$ and $X_2 = Y_2$ and $X_3 = Y_3$ and $X_4 = Y_4$ and $X_5 = Y_5$.
- (34) For every element x of $[:X_1, X_2, X_3, X_4, X_5:]$ such that $x \in [:A_1, A_2, A_3, A_4, A_5:]$ holds $x_1 \in A_1$ and $x_2 \in A_2$ and $x_3 \in A_3$ and $x_4 \in A_4$ and $x_5 \in A_5$.
- (35) If $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$ and $X_3 \subseteq Y_3$ and $X_4 \subseteq Y_4$ and $X_5 \subseteq Y_5$, then $[:X_1, X_2, X_3, X_4, X_5:] \subseteq [:Y_1, Y_2, Y_3, Y_4, Y_5:]$.

Let us consider X_1 , X_2 , X_3 , X_4 , X_5 , A_1 , A_2 , A_3 , A_4 , A_5 . Then $[:A_1, A_2, A_3, A_4, A_5:]$ is a subset of $[:X_1, X_2, X_3, X_4, X_5:]$.

One can prove the following three propositions:

- (36) Suppose $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$. Let x_{11} be an element of $[:X_1, X_2:]$. Then there exists an element x_6 of X_1 and there exists an element x_7 of X_2 such that $x_{11} = \langle x_6, x_7 \rangle$.
- (37) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$, then for every element x_{11} of $[:X_1, X_2, X_3:]$ there exist x_6 , x_7 , x_8 such that $x_{11} = \langle x_6, x_7, x_8 \rangle$.
- (38) If $X_1 \neq \emptyset$ and $X_2 \neq \emptyset$ and $X_3 \neq \emptyset$ and $X_4 \neq \emptyset$, then for every element x_{11} of $[:X_1, X_2, X_3, X_4:]$ there exist x_6, x_7, x_8, x_9 such that $x_{11} = \langle x_6, x_7, x_8, x_9 \rangle$.

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [3] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/mcart_1.html.
- $[4] \begin{tabular}{ll} {\bf Zinaida\ Trybulec.\ Properties\ of\ subsets.} \begin{tabular}{ll} {\it Journal\ of\ Formalized\ Mathematics},1,1989. \ http://mizar.org/JFM/Vol1/subset_1.html. \end{tabular}$

Received October 13, 1990

Published January 2, 2004