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1. PRELIMINARIES

Let A be a set, leX be a set, leD be a non empty set of finite sequenceddpfet p be a partial
function fromX to D, and leti be a set. Themp; is an element ob.
We follow the rulesk, t, i, j, m, nare natural numbers,is a set, andD is a nhon empty set.
Next we state the proposition

(ZE] For every finite sequengeholds rndgp;i) C rngp.

Let D be a non empty set, let us consiteand letM be a matrix oveD. ThenMy is a matrix
overD.
We now state four propositions:

(3) For every finite sequendd such that lem = n+ 1 holds lerfMn41) =n.

(4) LetM be a matrix oveD of dimensiom+ 1 x mandM; be a matrix oveD. Then
(i) if n> 0, then widthM = width(M;n41), and
(i) if My =(M(n+1)), then widthM = widthM;.

(5) For every matrixM over D of dimensionn+ 1 x m holds Mn,1 is a matrix overD of
dimensiom x m.

(6) For every finite sequendé such that leM = n+1 holdsM = (Myienm) ™~ (M(lenM)).

Let us consideb and letP be a finite sequence of elementsiaf Then(P) is a matrix oveD
of dimension 1x lenP.

2. MORE ONFINITE SEQUENCE

We now state two propositions:

(7) For every seA and for every finite sequenéeholds (SgmF~1(A))) ~ Sgm(F ~1(rngF \
A)) is a permutation of dor.

1 The proposition (1) has been removed.
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(8) LetF be afinite sequence ardbe a subset of rig Supposé- is one-to-one. Then there
exists a permutatiop of domF such tha{F —A®)~ (F —A) =F - p.

Let1; be a function. We say th#f is finite sequence yielding if and only if:
(Def. 1) For every such tha € doml; holdsly(x) is a finite sequence.

One can verify that there exists a function which is finite sequence yielding.
Let F, G be finite sequence yielding functions. The funckor G yields a finite sequence

yielding function and is defined by the conditions (Def. 2).

(Def. 2)(i) domF ~ G) =domF NndomG, and
(i) forevery set such that € dom(F — G) and for all finite sequences g such thatf = F (i)
andg=G(i) holds(F ~G)(i) = f " g.

3. MATRICES AND FINITE SEQUENCES INVECTOR SPACE

For simplicity, we use the following conventioi is a field,V is a vector space ové¢, a is an
element oK, W is an element 0¥, K1, K, K are linear combinations &f, andX is a subset of/.
One can prove the following four propositions:

(9) If X is linearly independent and the supportkaf C X and the support oK, C X and
S Ki=35Kp, thenK; = Ko.

(10) Suppose that
(i) Xislinearly independent,
(i) the support oKy C X,
(i)  the support ofK; C X,
(iv) the support oKs C X, and
v) SKi=3YKo+3Ka.
ThenK; = Ky +Ka.

(11) Suppos« is linearly independent and the supportkaf C X and the support ok, C X
anda# Ok andy Ky =a- 5 Ko. ThenK; = a- Ka.

(12) For every basib, of V there exists a linear combinatié@ of V such thaW =y K4 and
the support oK, C b,.

LetK be a field and leV be a vector space ov&r. We say thaV is finite dimensional if and
only if:

(Def. 3) There exists a finite subset\bfwhich is a basis of/.

Let K be a field. Observe that there exists a vector space KWwehich is strict and finite
dimensional.

Let K be a field and leV be a finite dimensional vector space o¥er A finite sequence of
elements of the carrier &f is said to be an ordered basis\bff:

(Def. 4) Itis one-to-one and rngit is a basis\af

For simplicity, we adopt the following ruleg is a finite sequenc&/y, V», V3 are finite dimen-
sional vector spaces ovEr, f, f;, fo are maps fronv into Vo, g is a map fron\, into Vs, by is an
ordered basis 0¥, b, is an ordered basis &b, bz is an ordered basis 6k, vy, v, are vectors of
V5, vis an element 0¥y, py, F are finite sequences of elements of the carriéf,ob;, d are finite
sequences of elements of the carrieKofindKy is a linear combination of;.

Let K be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure, V&t V> be vector spaces ové, and letf;, f, be
maps fromVy into V.. The functorf, + f; yielding a map fromV/; into Vs is defined as follows:
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(Def. 5) For every elementof Vy holds(f1+ f2)(v) = f1(v) + fa(v).

Let us consideK, let us consideY1, Vs, let us considelf, and leta be an element oK. The
functora- f yields a map fronV; into V., and is defined by:

(Def. 6) For every elementof V; holds(a- f)(v) =a- f(v).

Next we state three propositions:

(13) Letabe anelement of;, F be a finite sequence of elements of the carridfofindG be a
finite sequence of elements of the carrieKofSuppose leR = lenG and for evenk and for
every element of K such thak € domF andv= G(k) holdsF (k) =v-a. Theny F =5 G-a.

(14) Letabe an element o¥;, F be a finite sequence of elements of the carrigk pAndG be
a finite sequence of elements of the carriekgf If lenF = lenG and for everyk such that
k € domF holdsG(k) = F-a,theny G=SF -a.

(15) LetVy be an add-associative right zeroed right complementable non empty loop structure
andF be a finite sequence of elements of the carrier,0flf for everyk such thak € domF
holdsk = 0(\/1), theny F = O(Vl)'

Let us consideK, let us consideY;, and let us considegy, p2. The functor Iml{ps, p2) yields
a finite sequence of elements of the carrie¥pénd is defined by:

(Def. 7)  Imlt(p1, p2) = (the left multiplication ofV1)°(p1, p2).
Next we state the proposition
(16) If dompy = dompy, then domImlfps, p2) = domp;.

LetV; be a non empty loop structure andiébe a finite sequence of elements of (the carriér;of.
The functory M yielding a finite sequence of elements of the carrieviaf defined by:

(Def. 8) leny M =lenM and for everyk such thak € domy M holds(y M)k = 3 (My).

One can prove the following propositions:
(17) For every matriM over the carrier o, such that leM = 0 holdsy y M = 0y,
(18) For every matriM over the carrier of1 of dimensionrm+1 x 0 holdsy 3 M = Q).
(19) For every elementof V; holds{((x)) = ((x))T.

(20) For every finite sequenge of elements of the carrier of; such thatf is linear holds

f(xp)=3(f-p).

(21) Leta be a finite sequence of elements of the carrieKadnd p be a finite sequence of
elements of the carrier &f. If lenp=lena, then if f is linear, thenf - Imlt(a, p) = Imlt(a, f -
p).

(22) Letabe afinite sequence of elements of the carridf off lena = lenby, then ifgis linear,
theng(s Imlt(a,by)) = 5 Imlt(a,g- by).

(23) LetF, F be finite sequences of elements of the carriar oK, be a linear combination of
Vi, andp be a permutation of dofn If Fy =F - p, thenKs F1 = (K4 F) - p.

(24) If F is one-to-one and the supportkf C rngF, theny (Ksa F) = 5 Ka.

(25) LetAbe asetang be a finite sequence of elements of the carridfofSuppose rng C A.
Supposef; is linear andfs is linear and for every such tha € A holds f;(v) = f2(v). Then

fi(3 p) = f2(3 p)-

(26) If f1 is linear andf; is linear, then for every ordered basis of V1 such that letr; > 0
holds if f; - by = fo- by, thenfy = fo.
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Let D be a non empty set. One can check that every matrix Dvsifinite sequence yielding.

Let D be a non empty set and [Et G be matrices oveD. ThenF — G is a matrix oveD.

Let D be a non empty set, let us consiagem, k, let M1 be a matrix ovebD of dimensiom x Kk,
and letM, be a matrix oveD of dimensionrm x k. ThenM; ™ M is a matrix oveD of dimension
n+mx k.

One can prove the following propositions:

(27) LetMq be a matrix oveD of dimensiom x k andM; be a matrix oveD of dimensiorm
x k. If i € domMy, then LingM1 ™~ Mg, i) = Line(My,i).

(28) LetM; be a matrix oveD of dimensionn x k andM, be a matrix oveD of dimensionm
x k. If width M1 = widthMy, then width(M1 ™~ M2) = widthMj.

(29) LetM; be a matrix oveD of dimensiont x k andM, be a matrix oveD of dimensionm
x k. If n € domMz andi = lenM1 + n, then LingM1 ™ Mg, i) = Line(Mz,n).

(30) LetM; be a matrix oveD of dimensiomn x k andM, be a matrix oveD of dimensionm
x k. If width M1 = widthM, then for every such that € SegwidthiV; holds(M1 ™M) =

((M1)g,i) ™ (M2)m,i)-

(31) LetM; be a matrix over the carrier & of dimensionn x k andM, be a matrix over the
carrier ofV of dimensionm x k. Theny (M1~ Mz) = (3 M1) "~ 3 Ma.

(32) LetM; be a matrix oveb of dimensiom x k andM> be a matrix oveD of dimensionm
x k. If width My = widthMp, then(M1 ™~ M2)T = (MyT) ~ M, T.

(33) For all matricesvi;, M2 over the carrier o¥; holds (the addition 0¥/1)°(3 M1, 3 Ma) =
E(le\ Mz).

Let D be a non empty set, I& be a binary operation dn, and letP;, P, be finite sequences of
elements oD. ThenF°(Py, P,) is a finite sequence of elementsf
We now state several propositions:

(34) LetPy, P> be finite sequences of elements of the carriéfolf lenPy = lenP», theny ((the
addition ofVy)°(Py, P2)) = 3 PL+ 3 Pa.

(35) For all matricesl;, M, over the carrier o¥; such that leM; = lenM, holds s 5 My +
IXM2=35(Mi™ Ma).

(36) For every finite sequenéof elements of the carrier 8 holdsy 5 (P) =5 5 ((P)T).

(37) For every matrisM over the carrier o¥; such that leM = nholdsy yM =75 5 (MT).

(88) LetM be a matrix over the carrier ¢f of dimensionn x m. Supposen > 0 andm > 0.
Let p, d be finite sequences of elements of the carrid oSuppose lep =nand lerd = m
and for everyj such thatj € domd holdsd; = 5 (pe Mg j). Let b, ¢ be finite sequences
of elements of the carrier &f. Suppose leh = m and lerc = n and for everyi such that
i € domc holdsc; = 3 Imlt(Line(M,i),b). Theny Imlt(p,c) = 5 Imlt(d,b).

4. DECOMPOSITION OF AVECTOR INBASIS

Let K be a field, letv be a finite dimensional vector space o¥erlet b; be an ordered basis of
V, and letW be an element of. The functoW — by yields a finite sequence of elements of the
carrier ofK and is defined by the conditions (Def. 9).
(Def. 9)()) lenW — by) =lenbs, and
(if) there exists alinear combinatidfy of V such thatV = ¥ K4 and the support df4 C rngb;
and for everyk such that I< k andk < len(W — by) holds(W — b))k = Ka((b1)k)-

The following four propositions are true:
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(39) Ifvy — by =vo — by, thenvy = vs.

(40) v=yImit(v— by,by).

(41) Iflend = lenby, thend = 5 Imlt(d,b1) — by.

(42) Leta, d be finite sequences of elements of the carrig oSuppose lea= lenby. Let j be

a natural number. Suppo$e dombg and lerd = lenb, and for everyk such thak € domby,
holdsd(k) = (g((b2)k) — bs);. If lenby > 0, then(S Imlt(a,g-by) — bs); = S (aed).

5. ASSOCIATEDMATRIX OF LINEAR MAP

LetK be a field, letvy, V> be finite dimensional vector spaces o¥erlet f be a function from the
carrier ofV; into the carrier o/, letb; be a finite sequence of elements of the carriaf;ofind let
b, be an ordered basis ¥$. The functor AutM{ f, by, by) yields a matrix oveK and is defined by:

(Def. 10) lenAutMt f,bs,by) =lenb; and for everk such thak € domb; holds(AutMt(f, by, by))k =

f((by)k) — b2.

We now state several propositions:

(43) If lenby =0, then AutM{(f, by, by) = 0.

(44) Iflenby > 0O, then width AutM{ f, by, by) = lenbs.

(45) If f1islinear andf; is linear and AutM({f1, by, bp) = AutMt( 2, b1, bp) and lerb; > O, then

f1 = fo.

(46) If f is linear andg is linear and leh; > 0 and lerb, > 0 and lerbs > 0, then AutM{(g-

f,by,bs3) = AutMt(f, by, by) - AutMt(g, by, bs).

(47)  AutMt(f1+ fz,b1,bp) = AutMt(f1, b1, bp) + AutMt(f, by, by).

(48) Ifa## 0Ok, then AutMt{a- f,by,by) = a- AutMt(f, by, by).
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