Associated Matrix of Linear Map

Robert Milewski Warsaw University Białystok

MML Identifier: MATRLIN.

WWW: http://mizar.org/JFM/Vol7/matrlin.html

The articles [16], [7], [23], [2], [14], [3], [24], [4], [6], [5], [11], [12], [26], [25], [17], [13], [22], [19], [18], [10], [21], [15], [20], [1], [9], and [8] provide the notation and terminology for this paper.

1. Preliminaries

Let A be a set, let X be a set, let D be a non empty set of finite sequences of A, let p be a partial function from X to D, and let i be a set. Then p_i is an element of D.

We follow the rules: k, t, i, j, m, n are natural numbers, x is a set, and D is a non empty set. Next we state the proposition

(2)¹ For every finite sequence p holds $\operatorname{rng}(p_{\upharpoonright i}) \subseteq \operatorname{rng} p$.

Let *D* be a non empty set, let us consider *k*, and let *M* be a matrix over *D*. Then $M_{\uparrow k}$ is a matrix over *D*.

We now state four propositions:

- (3) For every finite sequence M such that len M = n + 1 holds $len(M_{n+1}) = n$.
- (4) Let M be a matrix over D of dimension $n+1 \times m$ and M_1 be a matrix over D. Then
- (i) if n > 0, then width $M = \text{width}(M_{n+1})$, and
- (ii) if $M_1 = \langle M(n+1) \rangle$, then width $M = \text{width } M_1$.
- (5) For every matrix M over D of dimension $n+1 \times m$ holds M_{n+1} is a matrix over D of dimension $n \times m$.
- (6) For every finite sequence M such that $\operatorname{len} M = n + 1$ holds $M = (M_{| \operatorname{len} M}) \cap \langle M(\operatorname{len} M) \rangle$.

Let us consider D and let P be a finite sequence of elements of D. Then $\langle P \rangle$ is a matrix over D of dimension $1 \times \text{len } P$.

2. More on Finite Sequence

We now state two propositions:

(7) For every set A and for every finite sequence F holds $(\operatorname{Sgm}(F^{-1}(A))) \cap \operatorname{Sgm}(F^{-1}(\operatorname{rng} F \setminus A))$ is a permutation of dom F.

1

¹ The proposition (1) has been removed.

(8) Let F be a finite sequence and A be a subset of rng F. Suppose F is one-to-one. Then there exists a permutation p of dom F such that $(F - A^c) \cap (F - A) = F \cdot p$.

Let I_1 be a function. We say that I_1 is finite sequence yielding if and only if:

(Def. 1) For every x such that $x \in \text{dom } I_1$ holds $I_1(x)$ is a finite sequence.

One can verify that there exists a function which is finite sequence yielding.

Let F, G be finite sequence yielding functions. The functor $F \cap G$ yields a finite sequence yielding function and is defined by the conditions (Def. 2).

- (Def. 2)(i) $\operatorname{dom}(F \cap G) = \operatorname{dom} F \cap \operatorname{dom} G$, and
 - (ii) for every set i such that $i \in \text{dom}(F \cap G)$ and for all finite sequences f, g such that f = F(i) and g = G(i) holds $(F \cap G)(i) = f \cap g$.
 - 3. MATRICES AND FINITE SEQUENCES IN VECTOR SPACE

For simplicity, we use the following convention: K is a field, V is a vector space over K, a is an element of K, W is an element of V, K_1 , K_2 , K_3 are linear combinations of V, and X is a subset of V. One can prove the following four propositions:

- (9) If X is linearly independent and the support of $K_1 \subseteq X$ and the support of $K_2 \subseteq X$ and $\sum K_1 = \sum K_2$, then $K_1 = K_2$.
- (10) Suppose that
 - (i) X is linearly independent,
- (ii) the support of $K_1 \subseteq X$,
- (iii) the support of $K_2 \subseteq X$,
- (iv) the support of $K_3 \subseteq X$, and
- $(v) \quad \sum K_1 = \sum K_2 + \sum K_3.$

Then $K_1 = K_2 + K_3$.

- (11) Suppose X is linearly independent and the support of $K_1 \subseteq X$ and the support of $K_2 \subseteq X$ and $a \neq 0_K$ and $\sum K_1 = a \cdot \sum K_2$. Then $K_1 = a \cdot K_2$.
- (12) For every basis b_2 of V there exists a linear combination K_4 of V such that $W = \sum K_4$ and the support of $K_4 \subseteq b_2$.

Let K be a field and let V be a vector space over K. We say that V is finite dimensional if and only if:

(Def. 3) There exists a finite subset of V which is a basis of V.

Let K be a field. Observe that there exists a vector space over K which is strict and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A finite sequence of elements of the carrier of V is said to be an ordered basis of V if:

(Def. 4) It is one-to-one and rng it is a basis of V.

For simplicity, we adopt the following rules: p is a finite sequence, V_1 , V_2 , V_3 are finite dimensional vector spaces over K, f, f_1 , f_2 are maps from V_1 into V_2 , g is a map from V_2 into V_3 , b_1 is an ordered basis of V_1 , b_2 is an ordered basis of V_2 , b_3 is an ordered basis of V_3 , v_1 , v_2 are vectors of V_2 , v_3 is an element of V_1 , v_2 , v_3 are finite sequences of elements of the carrier of v_3 , v_4 , v_5 are finite sequences of elements of the carrier of v_4 , v_5 and v_5 is a linear combination of v_4 .

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, let V_1 , V_2 be vector spaces over K, and let f_1 , f_2 be maps from V_1 into V_2 . The functor $f_1 + f_2$ yielding a map from V_1 into V_2 is defined as follows:

(Def. 5) For every element *v* of V_1 holds $(f_1 + f_2)(v) = f_1(v) + f_2(v)$.

Let us consider K, let us consider V_1 , V_2 , let us consider f, and let a be an element of K. The functor $a \cdot f$ yields a map from V_1 into V_2 and is defined by:

(Def. 6) For every element v of V_1 holds $(a \cdot f)(v) = a \cdot f(v)$.

Next we state three propositions:

- (13) Let a be an element of V_1 , F be a finite sequence of elements of the carrier of V_1 , and G be a finite sequence of elements of the carrier of K. Suppose len F = len G and for every k and for every element v of K such that $k \in \text{dom } F$ and v = G(k) holds $F(k) = v \cdot a$. Then $\sum F = \sum G \cdot a$.
- (14) Let a be an element of V_1 , F be a finite sequence of elements of the carrier of K, and G be a finite sequence of elements of the carrier of V_1 . If len F = len G and for every k such that $k \in \text{dom } F$ holds $G(k) = F_k \cdot a$, then $\sum G = \sum F \cdot a$.
- (15) Let V_1 be an add-associative right zeroed right complementable non empty loop structure and F be a finite sequence of elements of the carrier of V_1 . If for every k such that $k \in \text{dom } F$ holds $F_k = O_{(V_1)}$, then $\sum F = O_{(V_1)}$.

Let us consider K, let us consider V_1 , and let us consider p_1 , p_2 . The functor $lmlt(p_1, p_2)$ yields a finite sequence of elements of the carrier of V_1 and is defined by:

(Def. 7) $lmlt(p_1, p_2) = (the left multiplication of <math>V_1)^{\circ}(p_1, p_2).$

Next we state the proposition

(16) If dom $p_1 = \text{dom } p_2$, then dom $\text{lmlt}(p_1, p_2) = \text{dom } p_1$.

Let V_1 be a non empty loop structure and let M be a finite sequence of elements of (the carrier of V_1)*. The functor $\sum M$ yielding a finite sequence of elements of the carrier of V_1 is defined by:

(Def. 8) $\operatorname{len} \sum M = \operatorname{len} M$ and for every k such that $k \in \operatorname{dom} \sum M$ holds $(\sum M)_k = \sum (M_k)$.

One can prove the following propositions:

- (17) For every matrix M over the carrier of V_1 such that len M = 0 holds $\sum \sum M = O_{(V_1)}$.
- (18) For every matrix M over the carrier of V_1 of dimension $m+1 \times 0$ holds $\sum \sum M = O_{(V_1)}$.
- (19) For every element x of V_1 holds $\langle \langle x \rangle \rangle = \langle \langle x \rangle \rangle^{\mathrm{T}}$.
- (20) For every finite sequence p of elements of the carrier of V_1 such that f is linear holds $f(\sum p) = \sum (f \cdot p)$.
- (21) Let a be a finite sequence of elements of the carrier of K and p be a finite sequence of elements of the carrier of V_1 . If len p = len a, then if f is linear, then $f \cdot \text{lmlt}(a, p) = \text{lmlt}(a, f \cdot p)$.
- (22) Let a be a finite sequence of elements of the carrier of K. If len $a = \text{len } b_2$, then if g is linear, then $g(\sum \text{lmlt}(a, b_2)) = \sum \text{lmlt}(a, g \cdot b_2)$.
- (23) Let F, F_1 be finite sequences of elements of the carrier of V_1 , K_4 be a linear combination of V_1 , and P be a permutation of dom F. If $F_1 = F \cdot P$, then $K_4 F_1 = (K_4 F) \cdot P$.
- (24) If *F* is one-to-one and the support of $K_4 \subseteq \operatorname{rng} F$, then $\sum (K_4 F) = \sum K_4$.
- (25) Let *A* be a set and *p* be a finite sequence of elements of the carrier of V_1 . Suppose rng $p \subseteq A$. Suppose f_1 is linear and f_2 is linear and for every v such that $v \in A$ holds $f_1(v) = f_2(v)$. Then $f_1(\sum p) = f_2(\sum p)$.
- (26) If f_1 is linear and f_2 is linear, then for every ordered basis b_1 of V_1 such that len $b_1 > 0$ holds if $f_1 \cdot b_1 = f_2 \cdot b_1$, then $f_1 = f_2$.

Let D be a non empty set. One can check that every matrix over D is finite sequence yielding.

Let *D* be a non empty set and let *F*, *G* be matrices over *D*. Then $F \cap G$ is a matrix over *D*.

Let D be a non empty set, let us consider n, m, k, let M_1 be a matrix over D of dimension $n \times k$, and let M_2 be a matrix over D of dimension $m \times k$. Then $M_1 \cap M_2$ is a matrix over D of dimension $n + m \times k$.

One can prove the following propositions:

- (27) Let M_1 be a matrix over D of dimension $n \times k$ and M_2 be a matrix over D of dimension $m \times k$. If $i \in \text{dom } M_1$, then $\text{Line}(M_1 \cap M_2, i) = \text{Line}(M_1, i)$.
- (28) Let M_1 be a matrix over D of dimension $n \times k$ and M_2 be a matrix over D of dimension $m \times k$. If width $M_1 = \text{width } M_2$, then width $(M_1 \cap M_2) = \text{width } M_1$.
- (29) Let M_1 be a matrix over D of dimension $t \times k$ and M_2 be a matrix over D of dimension $m \times k$. If $n \in \text{dom } M_2$ and $i = \text{len } M_1 + n$, then $\text{Line}(M_1 \cap M_2, i) = \text{Line}(M_2, n)$.
- (30) Let M_1 be a matrix over D of dimension $n \times k$ and M_2 be a matrix over D of dimension $m \times k$. If width $M_1 = \text{width } M_2$, then for every i such that $i \in \text{Seg width } M_1 \text{ holds } (M_1 \cap M_2)_{\square,i} = ((M_1)_{\square,i}) \cap ((M_2)_{\square,i})$.
- (31) Let M_1 be a matrix over the carrier of V of dimension $n \times k$ and M_2 be a matrix over the carrier of V of dimension $m \times k$. Then $\sum (M_1 \cap M_2) = (\sum M_1) \cap \sum M_2$.
- (32) Let M_1 be a matrix over D of dimension $n \times k$ and M_2 be a matrix over D of dimension $m \times k$. If width $M_1 = \text{width } M_2$, then $(M_1 \cap M_2)^T = (M_1^T) \cap M_2^T$.
- (33) For all matrices M_1 , M_2 over the carrier of V_1 holds (the addition of V_1) $^{\circ}(\sum M_1, \sum M_2) = \sum (M_1 \cap M_2)$.

Let D be a non empty set, let F be a binary operation on D, and let P_1 , P_2 be finite sequences of elements of D. Then $F^{\circ}(P_1, P_2)$ is a finite sequence of elements of D.

We now state several propositions:

- (34) Let P_1 , P_2 be finite sequences of elements of the carrier of V_1 . If len $P_1 = \text{len } P_2$, then \sum (the addition of V_1) $^{\circ}(P_1, P_2) = \sum P_1 + \sum P_2$.
- (35) For all matrices M_1 , M_2 over the carrier of V_1 such that $\operatorname{len} M_1 = \operatorname{len} M_2$ holds $\sum \sum M_1 + \sum \sum M_2 = \sum \sum (M_1 \cap M_2)$.
- (36) For every finite sequence P of elements of the carrier of V_1 holds $\sum \sum \langle P \rangle = \sum \sum (\langle P \rangle^T)$.
- (37) For every matrix M over the carrier of V_1 such that $\operatorname{len} M = n$ holds $\sum \sum M = \sum \sum (M^T)$.
- (38) Let M be a matrix over the carrier of K of dimension $n \times m$. Suppose n > 0 and m > 0. Let p, d be finite sequences of elements of the carrier of K. Suppose $\operatorname{len} p = n$ and $\operatorname{len} d = m$ and for every j such that $j \in \operatorname{dom} d$ holds $d_j = \sum (p \bullet M_{\square,j})$. Let b, c be finite sequences of elements of the carrier of V_1 . Suppose $\operatorname{len} b = m$ and $\operatorname{len} c = n$ and for every i such that $i \in \operatorname{dom} c$ holds $c_i = \sum \operatorname{Imlt}(\operatorname{Line}(M,i),b)$. Then $\sum \operatorname{Imlt}(p,c) = \sum \operatorname{Imlt}(d,b)$.

4. Decomposition of a Vector in Basis

Let K be a field, let V be a finite dimensional vector space over K, let b_1 be an ordered basis of V, and let W be an element of V. The functor $W \to b_1$ yields a finite sequence of elements of the carrier of K and is defined by the conditions (Def. 9).

(Def. 9)(i) $\operatorname{len}(W \to b_1) = \operatorname{len} b_1$, and

(ii) there exists a linear combination K_4 of V such that $W = \sum K_4$ and the support of $K_4 \subseteq \operatorname{rng} b_1$ and for every k such that $1 \le k$ and $k \le \operatorname{len}(W \to b_1)$ holds $(W \to b_1)_k = K_4((b_1)_k)$.

The following four propositions are true:

- (39) If $v_1 \to b_2 = v_2 \to b_2$, then $v_1 = v_2$.
- (40) $v = \sum lmlt(v \rightarrow b_1, b_1).$
- (41) If len $d = \text{len } b_1$, then $d = \sum \text{lmlt}(d, b_1) \rightarrow b_1$.
- (42) Let a, d be finite sequences of elements of the carrier of K. Suppose len $a = \text{len } b_2$. Let j be a natural number. Suppose $j \in \text{dom } b_3$ and len $d = \text{len } b_2$ and for every k such that $k \in \text{dom } b_2$ holds $d(k) = (g((b_2)_k) \to b_3)_j$. If len $b_2 > 0$, then $(\sum \text{Imlt}(a, g \cdot b_2) \to b_3)_j = \sum (a \cdot d)$.

5. ASSOCIATED MATRIX OF LINEAR MAP

Let K be a field, let V_1 , V_2 be finite dimensional vector spaces over K, let f be a function from the carrier of V_1 into the carrier of V_2 , let b_1 be a finite sequence of elements of the carrier of V_1 , and let b_2 be an ordered basis of V_2 . The functor $AutMt(f, b_1, b_2)$ yields a matrix over K and is defined by:

(Def. 10) len AutMt (f, b_1, b_2) = len b_1 and for every k such that $k \in \text{dom } b_1$ holds $(\text{AutMt}(f, b_1, b_2))_k = f((b_1)_k) \rightarrow b_2$.

We now state several propositions:

- (43) If $len b_1 = 0$, then $AutMt(f, b_1, b_2) = \emptyset$.
- (44) If $\operatorname{len} b_1 > 0$, then width $\operatorname{AutMt}(f, b_1, b_2) = \operatorname{len} b_2$.
- (45) If f_1 is linear and f_2 is linear and $AutMt(f_1, b_1, b_2) = AutMt(f_2, b_1, b_2)$ and $len b_1 > 0$, then $f_1 = f_2$.
- (46) If f is linear and g is linear and $len b_1 > 0$ and $len b_2 > 0$ and $len b_3 > 0$, then $AutMt(g \cdot f, b_1, b_3) = AutMt(f, b_1, b_2) \cdot AutMt(g, b_2, b_3)$.
- (47) $\operatorname{AutMt}(f_1 + f_2, b_1, b_2) = \operatorname{AutMt}(f_1, b_1, b_2) + \operatorname{AutMt}(f_2, b_1, b_2).$
- (48) If $a \neq 0_K$, then $\operatorname{AutMt}(a \cdot f, b_1, b_2) = a \cdot \operatorname{AutMt}(f, b_1, b_2)$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg 1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [7] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/matrix_2.html.

- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [14] Michał Muzalewski. Rings and modules part II. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/mod_ 2.html.
- [15] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [18] Wojciech A. Trybulec. Basis of vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_7.html.
- [19] Wojciech A. Trybulec. Linear combinations in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_6.html.
- [20] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_3.html.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html.
- [23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [25] Katarzyna Zawadzka. Sum and product of finite sequences of elements of a field. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/fvsum_1.html.
- [26] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/matrix_3.html.

Received June 30, 1995

Published January 2, 2004