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[19], [18], [10], [21], [15], [20], [1], [9], and [8] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let A be a set, letX be a set, letD be a non empty set of finite sequences ofA, let p be a partial
function fromX to D, and leti be a set. Thenpi is an element ofD.

We follow the rules:k, t, i, j, m, n are natural numbers,x is a set, andD is a non empty set.
Next we state the proposition

(2)1 For every finite sequencep holds rng(p�i)⊆ rngp.

Let D be a non empty set, let us considerk, and letM be a matrix overD. ThenM�k is a matrix
overD.

We now state four propositions:

(3) For every finite sequenceM such that lenM = n+1 holds len(M�n+1) = n.

(4) LetM be a matrix overD of dimensionn+1× m andM1 be a matrix overD. Then

(i) if n > 0, then widthM = width(M�n+1), and

(ii) if M1 = 〈M(n+1)〉, then widthM = widthM1.

(5) For every matrixM over D of dimensionn+ 1 × m holdsM�n+1 is a matrix overD of
dimensionn× m.

(6) For every finite sequenceM such that lenM = n+1 holdsM = (M�lenM)a 〈M(lenM)〉.

Let us considerD and letP be a finite sequence of elements ofD. Then〈P〉 is a matrix overD
of dimension 1× lenP.

2. MORE ONFINITE SEQUENCE

We now state two propositions:

(7) For every setA and for every finite sequenceF holds(Sgm(F−1(A))) a Sgm(F−1(rngF \
A)) is a permutation of domF.

1 The proposition (1) has been removed.
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(8) LetF be a finite sequence andA be a subset of rngF. SupposeF is one-to-one. Then there
exists a permutationp of domF such that(F−Ac)a (F−A) = F · p.

Let I1 be a function. We say thatI1 is finite sequence yielding if and only if:

(Def. 1) For everyx such thatx∈ domI1 holdsI1(x) is a finite sequence.

One can verify that there exists a function which is finite sequence yielding.
Let F , G be finite sequence yielding functions. The functorF _ G yields a finite sequence

yielding function and is defined by the conditions (Def. 2).

(Def. 2)(i) dom(F _ G) = domF ∩domG, and

(ii) for every seti such thati ∈ dom(F _ G) and for all finite sequencesf , g such thatf = F(i)
andg = G(i) holds(F _ G)(i) = f a g.

3. MATRICES AND FINITE SEQUENCES INVECTORSPACE

For simplicity, we use the following convention:K is a field,V is a vector space overK, a is an
element ofK, W is an element ofV, K1, K2, K3 are linear combinations ofV, andX is a subset ofV.

One can prove the following four propositions:

(9) If X is linearly independent and the support ofK1 ⊆ X and the support ofK2 ⊆ X and
∑K1 = ∑K2, thenK1 = K2.

(10) Suppose that

(i) X is linearly independent,

(ii) the support ofK1 ⊆ X,

(iii) the support ofK2 ⊆ X,

(iv) the support ofK3 ⊆ X, and

(v) ∑K1 = ∑K2 +∑K3.

ThenK1 = K2 +K3.

(11) SupposeX is linearly independent and the support ofK1 ⊆ X and the support ofK2 ⊆ X
anda 6= 0K and∑K1 = a·∑K2. ThenK1 = a·K2.

(12) For every basisb2 of V there exists a linear combinationK4 of V such thatW = ∑K4 and
the support ofK4 ⊆ b2.

Let K be a field and letV be a vector space overK. We say thatV is finite dimensional if and
only if:

(Def. 3) There exists a finite subset ofV which is a basis ofV.

Let K be a field. Observe that there exists a vector space overK which is strict and finite
dimensional.

Let K be a field and letV be a finite dimensional vector space overK. A finite sequence of
elements of the carrier ofV is said to be an ordered basis ofV if:

(Def. 4) It is one-to-one and rngit is a basis ofV.

For simplicity, we adopt the following rules:p is a finite sequence,V1, V2, V3 are finite dimen-
sional vector spaces overK, f , f1, f2 are maps fromV1 into V2, g is a map fromV2 into V3, b1 is an
ordered basis ofV1, b2 is an ordered basis ofV2, b3 is an ordered basis ofV3, v1, v2 are vectors of
V2, v is an element ofV1, p2, F are finite sequences of elements of the carrier ofV1, p1, d are finite
sequences of elements of the carrier ofK, andK4 is a linear combination ofV1.

Let K be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure, letV1, V2 be vector spaces overK, and let f1, f2 be
maps fromV1 into V2. The functorf1 + f2 yielding a map fromV1 into V2 is defined as follows:
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(Def. 5) For every elementv of V1 holds( f1 + f2)(v) = f1(v)+ f2(v).

Let us considerK, let us considerV1, V2, let us considerf , and leta be an element ofK. The
functora· f yields a map fromV1 into V2 and is defined by:

(Def. 6) For every elementv of V1 holds(a· f )(v) = a· f (v).

Next we state three propositions:

(13) Leta be an element ofV1, F be a finite sequence of elements of the carrier ofV1, andG be a
finite sequence of elements of the carrier ofK. Suppose lenF = lenG and for everyk and for
every elementv of K such thatk∈ domF andv= G(k) holdsF(k) = v·a. Then∑F = ∑G·a.

(14) Leta be an element ofV1, F be a finite sequence of elements of the carrier ofK, andG be
a finite sequence of elements of the carrier ofV1. If lenF = lenG and for everyk such that
k∈ domF holdsG(k) = Fk ·a, then∑G = ∑F ·a.

(15) LetV1 be an add-associative right zeroed right complementable non empty loop structure
andF be a finite sequence of elements of the carrier ofV1. If for everyk such thatk∈ domF
holdsFk = 0(V1), then∑F = 0(V1).

Let us considerK, let us considerV1, and let us considerp1, p2. The functor lmlt(p1, p2) yields
a finite sequence of elements of the carrier ofV1 and is defined by:

(Def. 7) lmlt(p1, p2) = (the left multiplication ofV1)◦(p1, p2).

Next we state the proposition

(16) If domp1 = domp2, then domlmlt(p1, p2) = domp1.

LetV1 be a non empty loop structure and letM be a finite sequence of elements of (the carrier ofV1)∗.
The functor∑M yielding a finite sequence of elements of the carrier ofV1 is defined by:

(Def. 8) len∑M = lenM and for everyk such thatk∈ dom∑M holds(∑M)k = ∑(Mk).

One can prove the following propositions:

(17) For every matrixM over the carrier ofV1 such that lenM = 0 holds∑∑M = 0(V1).

(18) For every matrixM over the carrier ofV1 of dimensionm+1× 0 holds∑∑M = 0(V1).

(19) For every elementx of V1 holds〈〈x〉〉= 〈〈x〉〉T.

(20) For every finite sequencep of elements of the carrier ofV1 such thatf is linear holds
f (∑ p) = ∑( f · p).

(21) Let a be a finite sequence of elements of the carrier ofK and p be a finite sequence of
elements of the carrier ofV1. If len p= lena, then if f is linear, thenf · lmlt(a, p) = lmlt(a, f ·
p).

(22) Leta be a finite sequence of elements of the carrier ofK. If lena= lenb2, then ifg is linear,
theng(∑ lmlt(a,b2)) = ∑ lmlt(a,g·b2).

(23) LetF , F1 be finite sequences of elements of the carrier ofV1, K4 be a linear combination of
V1, andp be a permutation of domF. If F1 = F · p, thenK4 F1 = (K4 F) · p.

(24) If F is one-to-one and the support ofK4 ⊆ rngF, then∑(K4 F) = ∑K4.

(25) LetA be a set andp be a finite sequence of elements of the carrier ofV1. Suppose rngp⊆A.
Supposef1 is linear andf2 is linear and for everyv such thatv∈ A holds f1(v) = f2(v). Then
f1(∑ p) = f2(∑ p).

(26) If f1 is linear andf2 is linear, then for every ordered basisb1 of V1 such that lenb1 > 0
holds if f1 ·b1 = f2 ·b1, then f1 = f2.
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Let D be a non empty set. One can check that every matrix overD is finite sequence yielding.
Let D be a non empty set and letF , G be matrices overD. ThenF _ G is a matrix overD.
Let D be a non empty set, let us considern, m, k, let M1 be a matrix overD of dimensionn× k,

and letM2 be a matrix overD of dimensionm× k. ThenM1
a M2 is a matrix overD of dimension

n+m× k.
One can prove the following propositions:

(27) LetM1 be a matrix overD of dimensionn× k andM2 be a matrix overD of dimensionm
× k. If i ∈ domM1, then Line(M1

a M2, i) = Line(M1, i).

(28) LetM1 be a matrix overD of dimensionn× k andM2 be a matrix overD of dimensionm
× k. If widthM1 = widthM2, then width(M1

a M2) = widthM1.

(29) LetM1 be a matrix overD of dimensiont × k andM2 be a matrix overD of dimensionm
× k. If n∈ domM2 andi = lenM1 +n, then Line(M1

a M2, i) = Line(M2,n).

(30) LetM1 be a matrix overD of dimensionn× k andM2 be a matrix overD of dimensionm
× k. If widthM1 = widthM2, then for everyi such thati ∈SegwidthM1 holds(M1

a M2)�,i =
((M1)�,i)a ((M2)�,i).

(31) LetM1 be a matrix over the carrier ofV of dimensionn × k andM2 be a matrix over the
carrier ofV of dimensionm× k. Then∑(M1

a M2) = (∑M1)a ∑M2.

(32) LetM1 be a matrix overD of dimensionn× k andM2 be a matrix overD of dimensionm
× k. If widthM1 = widthM2, then(M1

a M2)T = (M1
T)_ M2

T.

(33) For all matricesM1, M2 over the carrier ofV1 holds (the addition ofV1)◦(∑M1, ∑M2) =
∑(M1

_ M2).

Let D be a non empty set, letF be a binary operation onD, and letP1, P2 be finite sequences of
elements ofD. ThenF◦(P1, P2) is a finite sequence of elements ofD.

We now state several propositions:

(34) LetP1, P2 be finite sequences of elements of the carrier ofV1. If lenP1 = lenP2, then∑((the
addition ofV1)◦(P1, P2)) = ∑P1 +∑P2.

(35) For all matricesM1, M2 over the carrier ofV1 such that lenM1 = lenM2 holds∑∑M1 +
∑∑M2 = ∑∑(M1

_ M2).

(36) For every finite sequenceP of elements of the carrier ofV1 holds∑∑〈P〉= ∑∑(〈P〉T).

(37) For every matrixM over the carrier ofV1 such that lenM = n holds∑∑M = ∑∑(MT).

(38) LetM be a matrix over the carrier ofK of dimensionn × m. Supposen > 0 andm> 0.
Let p, d be finite sequences of elements of the carrier ofK. Suppose lenp = n and lend = m
and for everyj such that j ∈ domd holds d j = ∑(p•M�, j). Let b, c be finite sequences
of elements of the carrier ofV1. Suppose lenb = m and lenc = n and for everyi such that
i ∈ domc holdsci = ∑ lmlt(Line(M, i),b). Then∑ lmlt(p,c) = ∑ lmlt(d,b).

4. DECOMPOSITION OF AVECTOR IN BASIS

Let K be a field, letV be a finite dimensional vector space overK, let b1 be an ordered basis of
V, and letW be an element ofV. The functorW → b1 yields a finite sequence of elements of the
carrier ofK and is defined by the conditions (Def. 9).

(Def. 9)(i) len(W → b1) = lenb1, and

(ii) there exists a linear combinationK4 of V such thatW = ∑K4 and the support ofK4⊆ rngb1

and for everyk such that 1≤ k andk≤ len(W → b1) holds(W → b1)k = K4((b1)k).

The following four propositions are true:
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(39) If v1 → b2 = v2 → b2, thenv1 = v2.

(40) v = ∑ lmlt(v→ b1,b1).

(41) If lend = lenb1, thend = ∑ lmlt(d,b1)→ b1.

(42) Leta, d be finite sequences of elements of the carrier ofK. Suppose lena= lenb2. Let j be
a natural number. Supposej ∈ domb3 and lend = lenb2 and for everyk such thatk∈ domb2

holdsd(k) = (g((b2)k)→ b3) j . If lenb2 > 0, then(∑ lmlt(a,g·b2)→ b3) j = ∑(a•d).

5. ASSOCIATEDMATRIX OF L INEAR MAP

Let K be a field, letV1, V2 be finite dimensional vector spaces overK, let f be a function from the
carrier ofV1 into the carrier ofV2, let b1 be a finite sequence of elements of the carrier ofV1, and let
b2 be an ordered basis ofV2. The functor AutMt( f ,b1,b2) yields a matrix overK and is defined by:

(Def. 10) lenAutMt( f ,b1,b2)= lenb1 and for everyk such thatk∈domb1 holds(AutMt( f ,b1,b2))k =
f ((b1)k)→ b2.

We now state several propositions:

(43) If lenb1 = 0, then AutMt( f ,b1,b2) = /0.

(44) If lenb1 > 0, then widthAutMt( f ,b1,b2) = lenb2.

(45) If f1 is linear andf2 is linear and AutMt( f1,b1,b2) = AutMt( f2,b1,b2) and lenb1 > 0, then
f1 = f2.

(46) If f is linear andg is linear and lenb1 > 0 and lenb2 > 0 and lenb3 > 0, then AutMt(g ·
f ,b1,b3) = AutMt( f ,b1,b2) ·AutMt(g,b2,b3).

(47) AutMt( f1 + f2,b1,b2) = AutMt( f1,b1,b2)+AutMt( f2,b1,b2).

(48) If a 6= 0K , then AutMt(a· f ,b1,b2) = a·AutMt( f ,b1,b2).
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[4] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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