Calculation of Matrices of Field Elements. Part I

Yatsuka Nakamura Shinshu University Nagano Hiroshi Yamazaki Shinshu University Nagano

Summary. This article gives property of calculation of matrices.

MML Identifier: MATRIX_4.

WWW: http://mizar.org/JFM/Vol15/matrix_4.html

The articles [8], [5], [10], [11], [2], [1], [3], [4], [13], [6], [7], [12], and [9] provide the notation and terminology for this paper.

In this paper *i* denotes a natural number.

Let K be a field and let M_1 , M_2 be matrices over K. The functor $M_1 - M_2$ yielding a matrix over K is defined as follows:

(Def. 1)
$$M_1 - M_2 = M_1 + -M_2$$
.

Next we state a number of propositions:

- (1) For every field *K* and for every matrix *M* over *K* such that len M > 0 holds -M = M.
- (2) For every field K and for every matrix M over K such that len M > 0 holds $M + -M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(len M) \times (width M)}$.
- (3) For every field K and for every matrix M over K such that len M > 0 holds $M M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(len M) \times (width M)}$.
- (4) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{width} M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$ and $M_1 + M_3 = M_2 + M_3$. Then $M_1 = M_2$.
- (5) For every field K and for all matrices M_1 , M_2 over K such that $len M_2 > 0$ holds $M_1 M_2 = M_1 + M_2$.
- (6) For every field K and for all matrices M_1 , M_2 over K such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 = M_1 + M_2$ holds $M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K$

- (7) For every field K and for all matrices M_1 , M_2 over K such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$ holds $M_1 = M_2$.
- (8) For every field K and for all matrices M_1 , M_2 over K such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 + M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$ holds $M_2 = -M_1$.
- (9) For all natural numbers n, m and for every field K such that n > 0 holds $-\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m}.$
- (10) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ and $M_2 M_1 = M_2$ holds $M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(len M_1) \times (width M_1)}$.
- (11) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = M_1 (M_2 M_2)$.
- (12) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $-(M_1 + M_2) = -M_1 + -M_2$.
- (13) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 (M_1 M_2) = M_2$.
- (14) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose $\text{len } M_1 = \text{len } M_2$ and $\text{len } M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and $\text{len } M_1 > 0$ and $M_1 M_3 = M_2 M_3$. Then $M_1 = M_2$.
- (15) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose $len M_1 = len M_2$ and $len M_2 = len M_3$ and $width M_1 = width M_2$ and $width M_2 = width M_3$ and $len M_1 > 0$ and $M_3 M_1 = M_3 M_2$. Then $M_1 = M_2$.
- (16) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 M_2 M_3 = M_1 M_3 M_2$.
- (17) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 M_3 = M_1 M_2 (M_3 M_2)$.
- (18) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_3 M_1 (M_3 M_2) = M_2 M_1$.
- (19) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $len M_1 = len M_2$ and $len M_2 = len M_3$ and $len M_3 = len M_4$ and width $M_1 = width M_2$ and width $M_2 = width M_3$ and width $M_3 = width M_4$ and $len M_1 > 0$ and $M_1 M_2 = M_3 M_4$. Then $M_1 M_3 = M_2 M_4$.
- (20) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = M_1 + (M_2 M_2)$.

- (21) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and width $M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = (M_1 + M_2) M_2$.
- (22) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = (M_1 M_2) + M_2$.
- (23) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 + M_3 = M_1 + M_2 + (M_3 M_2)$.
- (24) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $(M_1 + M_2) M_3 = (M_1 M_3) + M_2$.
- (25) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $(M_1 M_2) + M_3 = (M_3 M_2) + M_1$.
- (26) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 + M_3 = (M_1 + M_2) (M_2 M_3)$.
- (27) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 M_3 = (M_1 + M_2) (M_3 + M_2)$.
- (28) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $len M_1 = len M_2$ and $len M_2 = len M_3$ and $len M_3 = len M_4$ and width $M_1 = width M_2$ and width $M_2 = width M_3$ and width $M_3 = width M_4$ and $len M_1 > 0$ and $M_1 + M_2 = M_3 + M_4$. Then $M_1 M_3 = M_4 M_2$.
- (29) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $len M_1 = len M_2$ and $len M_2 = len M_3$ and $len M_3 = len M_4$ and width $M_1 = width M_2$ and width $M_2 = width M_3$ and width $M_3 = width M_4$ and $len M_1 > 0$ and $M_1 M_3 = M_4 M_2$. Then $M_1 + M_2 = M_3 + M_4$.
- (30) Let K be a field and M_1 , M_2 , M_3 , M_4 be matrices over K. Suppose $len M_1 = len M_2$ and $len M_2 = len M_3$ and $len M_3 = len M_4$ and width $M_1 = width M_2$ and width $M_2 = width M_3$ and width $M_3 = width M_4$ and $len M_1 > 0$ and $M_1 + M_2 = M_3 M_4$. Then $M_1 + M_4 = M_3 M_2$.
- (31) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 (M_2 + M_3) = M_1 M_2 M_3$.
- (32) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 (M_2 M_3) = (M_1 M_2) + M_3$.
- (33) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{width} M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_1 (M_2 M_3) = M_1 + (M_3 M_2)$.
- (34) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If len $M_1 = \text{len } M_2$ and len $M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and len $M_1 > 0$, then $M_1 M_3 = (M_1 M_2) + (M_2 M_3)$.
- (35) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$ and $-M_1 = -M_2$, then $M_1 = M_2$.
- (36) For every field K and for every matrix M over K such that len M > 0 and $-M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(len M) \times (width M)}$ holds $M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(len M) \times (width M)}$.

- (37) For every field K and for all matrices M_1 , M_2 over K such that $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{len} M_1 > 0$ and $M_1 + -M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(\operatorname{len} M_1) \times (\operatorname{width} M_1)}$ holds $M_1 = M_2$.
- (38) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = M_1 + M_2 + -M_2$.
- (39) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = M_1 + (M_2 + -M_2)$.
- (40) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and width $M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = -M_2 + M_1 + M_2$.
- (41) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and width $M_1 = width M_2$ and $len M_1 > 0$ holds $-(-M_1 + M_2) = M_1 + -M_2$.
- (42) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 + M_2 = -(-M_1 + -M_2)$.
- (43) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and width $M_1 = width M_2$ and $len M_1 > 0$ holds $-(M_1 M_2) = M_2 M_1$.
- (44) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $-M_1 M_2 = -M_2 M_1$.
- (45) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = -M_2 (-M_1 M_2)$.
- (46) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\text{len } M_1 = \text{len } M_2$ and $\text{len } M_2 = \text{len } M_3$ and width $M_1 = \text{width } M_2$ and width $M_2 = \text{width } M_3$ and $\text{len } M_1 > 0$, then $-M_1 M_2 M_3 = -M_1 M_3 M_2$.
- (47) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{width} M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $-M_1 M_2 M_3 = -M_2 M_3 M_1$.
- (48) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{width} M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $-M_1 M_2 M_3 = -M_3 M_2 M_1$.
- (49) Let K be a field and M_1 , M_2 , M_3 be matrices over K. If $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and width $M_1 = \operatorname{width} M_2$ and width $M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$, then $M_3 M_1 (M_3 M_2) = -(M_1 M_2)$.
- (50) For every field K and for every matrix M over K such that len M > 0 holds $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{(len M) \times (width M)} M = -M.$
- (51) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 + M_2 = M_1 -M_2$.
- (52) For every field K and for all matrices M_1 , M_2 over K such that $len M_1 = len M_2$ and $width M_1 = width M_2$ and $len M_1 > 0$ holds $M_1 = M_1 (M_2 + -M_2)$.
- (53) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose $\operatorname{len} M_1 = \operatorname{len} M_2$ and $\operatorname{len} M_2 = \operatorname{len} M_3$ and $\operatorname{width} M_1 = \operatorname{width} M_2$ and $\operatorname{width} M_2 = \operatorname{width} M_3$ and $\operatorname{len} M_1 > 0$ and $M_1 M_3 = M_2 + -M_3$. Then $M_1 = M_2$.

- (54) Let K be a field and M_1 , M_2 , M_3 be matrices over K. Suppose $len M_1 = len M_2$ and $len M_2 = len M_3$ and width $M_1 = width M_2$ and width $M_2 = width M_3$ and $len M_1 > 0$ and $M_3 M_1 = M_3 + -M_2$. Then $M_1 = M_2$.
- (55) Let K be a field and A, B be matrices over K. If len A = len B and width A = width B, then the indices of A = the indices of B.
- (56) Let *K* be a field and *x*, *y*, *z* be finite sequences of elements of the carrier of *K*. If len x = len y and len y = len z, then $(x + y) \bullet z = x \bullet z + y \bullet z$.
- (57) Let *K* be a field and *x*, *y*, *z* be finite sequences of elements of the carrier of *K*. If len x = len y and len y = len z, then $z \cdot (x + y) = z \cdot x + z \cdot y$.
- (58) Let *D* be a non empty set and *M* be a matrix over *D*. Suppose len M > 0. Let *n* be a natural number. Then *M* is a matrix over *D* of dimension $n \times \text{width } M$ if and only if n = len M.
- (59) Let K be a field, j be a natural number, and A, B be matrices over K. Suppose len A = len B and width A = width B and there exists a natural number j such that $\langle i, j \rangle \in \text{the indices of } A$. Then Line(A + B, i) = Line(A, i) + Line(B, i).
- (60) Let K be a field, j be a natural number, and A, B be matrices over K. Suppose len A = len B and width A = width B and there exists a natural number i such that $\langle i, j \rangle \in \text{the indices of } A$. Then $(A + B)_{\square, j} = A_{\square, j} + B_{\square, j}$.
- (61) Let V_1 be a field and P_1 , P_2 be finite sequences of elements of the carrier of V_1 . If len $P_1 = \text{len } P_2$, then $\sum (P_1 + P_2) = \sum P_1 + \sum P_2$.
- (62) Let K be a field and A, B, C be matrices over K. If len B = len C and width B = width C and width A = len B and len A > 0 and len B > 0, then $A \cdot (B + C) = A \cdot B + A \cdot C$.
- (63) Let K be a field and A, B, C be matrices over K. If len B = len C and width B = width C and len A = width B and len B > 0 and len A > 0, then $(B + C) \cdot A = B \cdot A + C \cdot A$.
- (64) Let K be a field, n, m, k be natural numbers, M_1 be a matrix over K of dimension $n \times m$, and M_2 be a matrix over K of dimension $m \times k$. Suppose width $M_1 = \text{len } M_2$ and $0 < \text{len } M_1$ and $0 < \text{len } M_2$. Then $M_1 \cdot M_2$ is a matrix over K of dimension $n \times k$.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [4] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finsegop.html.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseg 2.html.
- [6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

- [12] Katarzyna Zawadzka. Sum and product of finite sequences of elements of a field. *Journal of Formalized Mathematics*, 4, 1992. http://mizar.org/JFM/Vol4/fvsum_1.html.
- [13] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/matrix_3.html.

Received August 8, 2003

Published January 2, 2004