The Product and the Determinant of Matrices with Entries in a Field

Katarzyna Zawadzka Warsaw University Białystok

Summary. Concerned with a generalization of concepts introduced in [14], i.e. there are introduced the sum and the product of matrices of any dimension of elements of any field.

MML Identifier: MATRIX_3.

WWW: http://mizar.org/JFM/Vol5/matrix_3.html

The articles [19], [8], [24], [20], [13], [25], [6], [7], [3], [5], [4], [17], [23], [16], [18], [11], [10], [9], [14], [22], [15], [1], [21], [26], [2], and [12] provide the notation and terminology for this paper.

1. Auxiliary Theorems

We adopt the following rules: i, j, k, l, n, m are natural numbers, D is a non empty set, and K is a field

The following proposition is true

(1) If n = n + k, then k = 0.

Let us consider K, n, m. The functor $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m}$ yields a matrix over K of dimension

 $n \times m$ and is defined by:

(Def. 1)
$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m} = n \mapsto (m \mapsto 0_{K}).$$

Let us consider K and let A be a matrix over K. The functor -A yields a matrix over K and is defined by:

(Def. 2) len(-A) = len A and width(-A) = width A and for all i, j such that $\langle i, j \rangle \in the$ indices of $A holds(-A) \circ (i, j) = -(A \circ (i, j))$.

Let us consider K and let A, B be matrices over K. The functor A + B yields a matrix over K and is defined by:

(Def. 3) len(A+B) = len A and width(A+B) = width A and for all i, j such that $\langle i, j \rangle \in$ the indices of A holds $(A+B) \circ (i,j) = (A \circ (i,j)) + (B \circ (i,j))$.

The following propositions are true:

(3)¹ For all
$$i, j$$
 such that $\langle i, j \rangle \in$ the indices of $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times m}$ holds $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times m} \circ (i, j) = 0_K$.

- (4) For all matrices A, B over K such that len A = len B and width A = width B holds A + B = B + A.
- (5) For all matrices A, B, C over K such that len A = len B and len A = len C and width A = width B and width A = width C holds (A + B) + C = A + (B + C).

(6) For every matrix
$$A$$
 over K of dimension $n \times m$ holds $A + \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m} = A$.

(7) For every matrix
$$A$$
 over K of dimension $n \times m$ holds $A + -A = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times m}$.

Let us consider K and let A, B be matrices over K. Let us assume that width $A = \operatorname{len} B$. The functor $A \cdot B$ yielding a matrix over K is defined by:

(Def. 4) $len(A \cdot B) = len A$ and $width(A \cdot B) = width B$ and for all i, j such that $\langle i, j \rangle \in$ the indices of $A \cdot B$ holds $(A \cdot B) \circ (i, j) = Line(A, i) \cdot B_{\Box, j}$.

Let us consider n, k, m, let us consider K, let A be a matrix over K of dimension $n \times k$, and let B be a matrix over K of dimension width $A \times m$. Then $A \cdot B$ is a matrix over K of dimension len $A \times M$ width B.

Let us consider K, let M be a matrix over K, and let a be an element of K. The functor $a \cdot M$ yields a matrix over K and is defined as follows:

(Def. 5) $len(a \cdot M) = len M$ and width $(a \cdot M) = width M$ and for all i, j such that $\langle i, j \rangle \in the$ indices of M holds $(a \cdot M) \circ (i, j) = a \cdot (M \circ (i, j))$.

Let us consider K, let M be a matrix over K, and let a be an element of K. The functor $M \cdot a$ yielding a matrix over K is defined as follows:

(Def. 6) $M \cdot a = a \cdot M$.

One can prove the following propositions:

(8) For all finite sequences p, q of elements of the carrier of K such that len p = len q holds $len(p \bullet q) = len p$ and $len(p \bullet q) = len q$.

(9) For all
$$i$$
, l such that $\langle i, l \rangle \in$ the indices of $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ and $l = i$ holds
$$\operatorname{Line}\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}, i)(l) = \mathbf{1}_K.$$

(10) For all
$$i$$
, l such that $\langle i,l \rangle \in$ the indices of $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ and $l \neq i$ holds
$$\operatorname{Line}\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}, i)(l) = 0_K.$$

¹ The proposition (2) has been removed.

(11) For all
$$l$$
, j such that $\langle l,j\rangle \in$ the indices of $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n\times n}$ and $l=j$ holds
$$\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n\times n} \cap_{\square,j}(l) = \mathbf{1}_K.$$

(12) For all
$$l$$
, j such that $\langle l,j\rangle\in$ the indices of $\begin{pmatrix}1&&0\\&\ddots&\\0&&1\end{pmatrix}_K^{n\times n}$ and $l\neq j$ holds
$$\begin{pmatrix}\begin{pmatrix}1&&0\\&\ddots&\\0&&1\end{pmatrix}_K^{n\times n}\\\begin{pmatrix}\begin{pmatrix}1&&0\\&\ddots&\\0&&1\end{pmatrix}_{K,j}(l)=0_K.$$

- (13) For every add-associative right zeroed right complementable non empty loop structure K holds $\sum (n \mapsto 0_K) = 0_K$.
- (14) Let K be an add-associative right zeroed right complementable non empty loop structure, p be a finite sequence of elements of the carrier of K, and given i. If $i \in \text{dom } p$ and for every k such that $k \in \text{dom } p$ and $k \neq i$ holds $p(k) = 0_K$, then $\sum p = p(i)$.
- (15) For all finite sequences p, q of elements of the carrier of K holds $len(p \bullet q) = min(len p, len q)$.
- (16) Let p, q be finite sequences of elements of the carrier of K and given i. Suppose $i \in \text{dom } p$ and $p(i) = \mathbf{1}_K$ and for every k such that $k \in \text{dom } p$ and $k \neq i$ holds $p(k) = 0_K$. Let given j such that $j \in \text{dom}(p \bullet q)$. Then
 - (i) if i = j, then $(p \bullet q)(j) = q(i)$, and
- (ii) if $i \neq j$, then $(p \bullet q)(j) = 0_K$.

(17) For all
$$i$$
, j such that $\langle i, j \rangle \in$ the indices of $\begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ holds if $i = j$, then
$$\operatorname{Line}\begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}_K^{n \times n}, i)(j) = \mathbf{1}_K \text{ and if } i \neq j, \text{ then Line}\begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}_K^{n \times n}, i)(j) = 0_K.$$

(18) For all
$$i$$
, j such that $\langle i, j \rangle \in$ the indices of $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ holds if $i = j$, then
$$\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$$
 holds if $i = j$, then
$$\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$$
 holds if $i = j$, then
$$\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$$
 holds if $i = j$, then
$$\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$$

- (19) Let p, q be finite sequences of elements of the carrier of K and given i. Suppose $i \in \text{dom } p$ and $i \in \text{dom } q$ and $p(i) = \mathbf{1}_K$ and for every k such that $k \in \text{dom } p$ and $k \neq i$ holds $p(k) = 0_K$. Then $\sum (p \bullet q) = q(i)$.
- (20) For every matrix A over K of dimension n holds $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} \cdot A = A.$

- (21) For every matrix A over K of dimension n holds $A \cdot \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n} = A$.
- (22) For all elements a, b of K holds $\langle \langle a \rangle \rangle \cdot \langle \langle b \rangle \rangle = \langle \langle a \cdot b \rangle \rangle$.
- (23) For all elements a_1 , a_2 , b_1 , b_2 , c_1 , c_2 , d_1 , d_2 of K holds $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 \cdot a_2 + b_1 \cdot c_2 & a_1 \cdot b_2 + b_1 \cdot d_2 \\ c_1 \cdot a_2 + d_1 \cdot c_2 & c_1 \cdot b_2 + d_1 \cdot d_2 \end{pmatrix}$.
- (24) For all matrices A, B over K such that width A = len B and width $B \neq 0$ holds $(A \cdot B)^T = B^T \cdot A^T$.

2. The Product of Matrices

Let I, J be non empty sets, let X be an element of FinI, and let Y be an element of FinJ. Then [:X,Y:] is an element of Fin[:I,J:].

Let I, J, D be non empty sets, let G be a binary operation on D, let f be a function from I into D, and let g be a function from J into D. Then $G \circ (f,g)$ is a function from [:I,J:] into D. We now state a number of propositions:

- (25) Let I, J, D be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose F is commutative and associative but $[:Y, X:] \neq \emptyset$ or F has a unity but G is commutative. Then $F \sum_{[:X,Y:]} (G \circ (f,g)) = F \sum_{[:Y,X:]} (G \circ (g,f))$.
- (26) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, and g be a function from J into D. Suppose F is commutative and associative and has a unity. Let x be an element of I and g be an element of g. Then $F-\sum_{\{x\},\{y\}:J}(G\circ (f,g))=F-\sum_{\{x\}}G^\circ(f,F-\sum_{\{y\}}g)$.
- (27) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Let X be an element of I. Then $F \sum_{[x]} \{x\}, y: \{G \circ (f, g)\} = F \sum_{\{x\}} G^{\circ}(f, F \sum_{Y} g)$.
- (28) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then F- $\sum_{[X,Y]}(G \circ (f,g)) = F$ - $\sum_X G^\circ(f,F$ - $\sum_Y g)$.
- (29) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, and g be a function from J into D. Suppose F is commutative and associative and has a unity and G is commutative. Let X be an element of I and Y be an element of I. Then $F-\sum_{[\{x\},\{y\},\{y\},\{G,G,G\})} = F-\sum_{\{y\}} G^{\circ}(F-\sum_{\{x\}}f,g)$.
- (30) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose that
 - (i) F is commutative and associative and has a unity and an inverse operation, and
- (ii) *G* is distributive w.r.t. *F* and commutative. Then $F - \sum_{[X,Y]} (G \circ (f,g)) = F - \sum_{Y} G^{\circ} (F - \sum_{X} f,g)$.
- (31) Let I, J be non empty sets, F be a binary operation on D, f be a function from [:I, J:] into D, g be a function from I into D, and Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation. Let x be an element of I. If for every element i of I holds $g(i) = F \sum_{Y} (\text{curry } f)(i)$, then $F \sum_{I: \{x\}, Y: I} f = F \sum_{\{x\}} g$.

- (32) Let I, J be non empty sets, F be a binary operation on D, f be a function from [:I, J:] into D, g be a function from I into D, X be an element of Fin I, and Y be an element of Fin J. Suppose for every element i of I holds $g(i) = F \sum_{I} (\operatorname{curry} f)(i)$ and F is commutative and associative and has a unity and an inverse operation. Then $F \sum_{I:X,Y:I} f = F \sum_{X} g$.
- (33) Let I, J be non empty sets, F be a binary operation on D, f be a function from [:I, J:] into D, g be a function from J into D, and X be an element of Fin I. Suppose F is commutative and associative and has a unity and an inverse operation. Let y be an element of J. If for every element j of J holds $g(j) = F \sum_{X} (\text{curry}' f)(j)$, then $F \sum_{[:X, \{y\}:]} f = F \sum_{\{y\}} g$.
- (34) Let I, J be non empty sets, F be a binary operation on D, f be a function from [:I, J:] into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose for every element j of J holds $g(j) = F \sum_{X} (\operatorname{curry}' f)(j)$ and F is commutative and associative and has a unity and an inverse operation. Then $F \sum_{[X,Y]} f = F \sum_{Y} g$.
- (35) For all matrices A, B, C over K such that width A = len B and width B = len C holds $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.

3. Determinant

Let us consider n, K, let M be a matrix over K of dimension n, and let p be an element of the permutations of n-element set. The functor p-Path M yielding a finite sequence of elements of the carrier of K is defined by:

(Def. 7) len(p-Path M) = n and for all i, j such that $i \in dom(p-Path M)$ and j = p(i) holds $(p-Path M)(i) = M \circ (i, j)$.

Let us consider n, K and let M be a matrix over K of dimension n. The product on paths of M yields a function from the permutations of n-element set into the carrier of K and is defined by the condition (Def. 8).

(Def. 8) Let p be an element of the permutations of n-element set. Then (the product on paths of M) $(p) = (-1)^{\operatorname{sgn}(p)}$ (the multiplication of $K \circledast (p\operatorname{-Path} M)$).

Let us consider n, let us consider K, and let M be a matrix over K of dimension n. The functor Det M yielding an element of the carrier of K is defined as follows:

(Def. 9) Det M = (the addition of K)- $\sum_{\Omega_{\text{the permutations of } n\text{-element set}}}$ (the product on paths of M).

In the sequel a denotes an element of K. Next we state the proposition

(36) $\operatorname{Det}\langle\langle a\rangle\rangle = a$.

Let us consider n, let us consider K, and let M be a matrix over K of dimension n. The diagonal of M yields a finite sequence of elements of the carrier of K and is defined by:

(Def. 10) len (the diagonal of M) = n and for every i such that $i \in \operatorname{Seg} n$ holds (the diagonal of M)(i) = $M \circ (i, i)$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. Curried and uncurried functions. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_5_html
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Basic functions and operations on functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.

- [5] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [11] Czesław Byliński. Semigroup operations on finite subsets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/setwop_2.html.
- [12] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html.
- [13] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/matrix 1.html.
- [15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/matrix_2.html.
- [16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [17] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [18] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
- [22] Andrzej Trybulec and Agata Darmochwał. Boolean domains. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [23] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlvect 1.html.
- $[24] \enskip \textbf{Zinaida Trybulec. Properties of subsets. } \textit{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [25] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [26] Katarzyna Zawadzka. Sum and product of finite sequences of elements of a field. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/fvsum_1.html.

Received May 17, 1993

Published January 2, 2004