Transpose Matrices and Groups of Permutations

Katarzyna Jankowska Warsaw University Białystok

Summary. Some facts concerning matrices with dimension 2×2 are shown. Upper and lower triangular matrices, and operation of deleting rows and columns in a matrix are introduced. Besides, we deal with sets of permutations and the fact that all permutations of finite set constitute a finite group is proved. Some proofs are based on [11] and [14].

MML Identifier: MATRIX_2.

WWW: http://mizar.org/JFM/Vol4/matrix_2.html

The articles [15], [8], [20], [21], [5], [7], [6], [2], [18], [19], [4], [17], [13], [3], [1], [12], [10], [16], and [9] provide the notation and terminology for this paper.

1. Some examples of matrices

For simplicity, we follow the rules: x, x_1 , x_2 , y_1 , y_2 are sets, i, j, k, l, n, m are natural numbers, D is a non empty set, K is a field, s is a finite sequence, and a, b, c, d are elements of D.

The scheme SeqDEx deals with a non empty set \mathcal{A} , a natural number \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

There exists a finite sequence p of elements of \mathcal{A} such that dom $p = \operatorname{Seg} \mathcal{B}$ and for every k such that $k \in \operatorname{Seg} \mathcal{B}$ holds $\mathcal{P}[k, p(k)]$

provided the parameters satisfy the following condition:

• For every k such that $k \in \operatorname{Seg} \mathcal{B}$ there exists an element x of \mathcal{A} such that $\mathcal{P}[k,x]$.

• For every k such that $k \in \text{Seg } \mathcal{B}$ there exists an element $a \in \mathbb{R}$ and $a \in \mathbb{R}$. Let us consider n, m and let a be a set. The functor $\begin{pmatrix} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & & a \end{pmatrix}$ yields a tabular finite

sequence and is defined by:

(Def. 1)
$$\begin{pmatrix} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & \dots & a \end{pmatrix}^{n \times m} = n \mapsto (m \mapsto a).$$

Let us consider D, n, m and let us consider d. Then $\begin{pmatrix} d & \dots & d \\ \vdots & \ddots & \vdots \\ d & \dots & d \end{pmatrix}^{n \times m}$ is a matrix over D of

dimension $n \times m$.

The following proposition is true

$$(1) \quad \text{If $\langle i,j\rangle \in $ the indices of } \left(\begin{array}{ccc} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & \dots & a \end{array} \right)^{n\times m}, \text{ then } \left(\begin{array}{ccc} a & \dots & a \\ \vdots & \ddots & \vdots \\ a & \dots & a \end{array} \right)^{n\times m} \circ (i,j) = a.$$

In the sequel a', b' are elements of K. Next we state the proposition

$$(2) \quad \begin{pmatrix} a' & \dots & a' \\ \vdots & \ddots & \vdots \\ a' & \dots & a' \end{pmatrix}^{n \times n} + \begin{pmatrix} b' & \dots & b' \\ \vdots & \ddots & \vdots \\ b' & \dots & b' \end{pmatrix}^{n \times n} = \begin{pmatrix} a' + b' & \dots & a' + b' \\ \vdots & \ddots & \vdots \\ a' + b' & \dots & a' + b' \end{pmatrix}^{n \times n}.$$

Let a, b, c, d be sets. The functor $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ yielding a tabular finite sequence is defined as follows:

(Def. 2)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \langle \langle a, b \rangle, \langle c, d \rangle \rangle.$$

Next we state two propositions:

(3)
$$\operatorname{len}\left(\begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array}\right) = 2$$
 and width $\left(\begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array}\right) = 2$ and the indices of $\left(\begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array}\right) = [\operatorname{Seg} 2, \operatorname{Seg} 2:]$.

(4)(i)
$$\langle 1, 1 \rangle \in \text{the indices of } \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$
,

(ii)
$$\langle 1, 2 \rangle \in \text{the indices of } \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$
,

(iii)
$$\langle 2, 1 \rangle \in \text{the indices of } \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$
, and

(iv)
$$\langle 2, 2 \rangle \in \text{the indices of } \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$
.

Let us consider D and let a be an element of D. Then $\langle a \rangle$ is an element of D^1 .

Let us consider D, let us consider n, and let p be an element of D^n . Then $\langle p \rangle$ is a matrix over D of dimension $1 \times n$.

The following proposition is true

(5)
$$\langle 1, 1 \rangle \in \text{the indices of } \langle \langle a \rangle \rangle \text{ and } \langle \langle a \rangle \rangle \circ (1, 1) = a.$$

Let us consider D and let a, b, c, d be elements of D. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a matrix over D of dimension 2.

The following proposition is true

(6)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ (1,1) = a$$
 and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ (1,2) = b$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ (2,1) = c$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ (2,2) = d$.

Let us consider n and let K be a field. A matrix over K of dimension n is said to be an upper triangular matrix over K of dimension n if:

(Def. 3) For all i, j such that
$$\langle i, j \rangle \in$$
 the indices of it holds if $i > j$, then it $\circ (i, j) = 0_K$.

Let us consider n and let us consider K. A matrix over K of dimension n is said to be a lower triangular matrix over K of dimension n if:

(Def. 4) For all i, j such that $\langle i, j \rangle \in$ the indices of it holds if i < j, then it $\circ (i, j) = 0_K$.

We now state the proposition

(7) For every matrix M over D such that len M = n holds M is a matrix over D of dimension $n \times \text{width } M$.

2. Deleting of rows and columns in a matrix

Let us consider i and let p be a finite sequence. The functor $p_{\uparrow i}$ yields a finite sequence and is defined as follows:

(Def. 5) $p_{\uparrow i} = p \cdot \operatorname{Sgm}(\operatorname{dom} p \setminus \{i\}).$

One can prove the following three propositions:

- (8) For every finite sequence p holds if $i \in \text{dom } p$, then there exists m such that len p = m+1 and $\text{len}(p_{\uparrow i}) = m$ and if $i \notin \text{dom } p$, then $p_{\uparrow i} = p$.
- (9) For every finite sequence p of elements of D holds $p_{|i|}$ is a finite sequence of elements of D.
- (10) For every matrix M over K of dimension $n \times m$ and for every k such that $k \in \operatorname{Seg} n$ holds $M(k) = \operatorname{Line}(M, k)$.

Let us consider i, let us consider K, and let M be a matrix over K. Let us assume that $i \in \text{Seg width } M$. The deleting of i-column in M yielding a matrix over K is defined by the conditions (Def. 6).

- (Def. 6)(i) len (the deleting of *i*-column in M) = len M, and
 - (ii) for every k such that $k \in \text{dom } M$ holds (the deleting of i-column in M) $(k) = \text{Line}(M, k)_{\uparrow i}$. One can prove the following propositions:
 - (11) For all matrices M_1 , M_2 over D such that $M_1^T = M_2^T$ and $len M_1 = len M_2$ holds $M_1 = M_2$.
 - (12) For every matrix M over D such that width M > 0 holds $len(M^T) = width M$ and $width(M^T) = len M$.
 - (13) For all matrices M_1 , M_2 over D such that width $M_1 > 0$ and width $M_2 > 0$ and $M_1^T = M_2^T$ and width $(M_1^T) = \text{width}(M_2^T)$ holds $M_1 = M_2$.
 - (14) For all matrices M_1 , M_2 over D such that width $M_1 > 0$ and width $M_2 > 0$ holds $M_1 = M_2$ iff $M_1^T = M_2^T$ and width $M_1 = \text{width } M_2$.
 - (15) For every matrix M over D such that len M > 0 and width M > 0 holds $(M^T)^T = M$.
 - (16) For every matrix M over D and for every i such that $i \in \text{dom } M$ holds $\text{Line}(M, i) = (M^T)_{\square, i}$.
 - (17) For every matrix M over D and for every j such that $j \in \text{Seg width } M$ holds $\text{Line}(M^T, j) = M_{\square, j}$.
 - (18) For every matrix M over D and for every i such that $i \in \text{dom } M$ holds M(i) = Line(M, i).

Let us consider i, let us consider K, and let M be a matrix over K. Let us assume that $i \in \text{dom } M$ and width M > 0. The deleting of i-row in M yields a matrix over K and is defined as follows:

- (Def. 7)(i) The deleting of *i*-row in $M = \emptyset$ if len M = 1,
 - (ii) width (the deleting of *i*-row in M) = width M and for every k such that $k \in \text{Seg width } M$ holds (the deleting of i-row in M) $_{\square,k} = (M_{\square,k})_{\upharpoonright i}$, otherwise.

Let us consider i, j, let us consider n, let us consider K, and let M be a matrix over K of dimension n. The deleting of i-row and j-column in M yields a matrix over K and is defined by:

(Def. 8) The deleting of *i*-row and *j*-column in $M = \begin{cases} i & \emptyset, \text{ if } n = 1, \\ \text{the deleting of } j\text{-column in the deleting of } i\text{-row in } M, \text{ otherwise.} \end{cases}$

3. Sets of Permutations

Let I_1 be a set. We say that I_1 is permutational if and only if:

(Def. 9) There exists n such that for every x such that $x \in I_1$ holds x is a permutation of Seg n.

Let us observe that there exists a set which is permutational and non empty.

Let P be a permutational non empty set. The functor len P yielding a natural number is defined as follows:

(Def. 10) There exists s such that $s \in P$ and len P = len s.

Let P be a permutational non empty set. We see that the element of P is a permutation of Seg len P.

One can prove the following proposition

(19) There exists a permutational non empty set P such that len P = n.

Let us consider n. The permutations of n-element set constitute a set defined by:

(Def. 11) $x \in$ the permutations of *n*-element set iff x is a permutation of Seg n.

Let us consider n. One can check that the permutations of n-element set is permutational and non empty.

We now state two propositions:

- (20) len(the permutations of *n*-element set) = n.
- (21) The permutations of 1-element set = $\{idseq(1)\}$.

Let us consider n and let p be an element of the permutations of n-element set. The functor len p yielding a natural number is defined as follows:

(Def. 12) There exists a finite sequence s such that s = p and len p = len s.

We now state the proposition

(22) For every element p of the permutations of n-element set holds len p = n.

4. GROUP OF PERMUTATIONS

In the sequel p, q are elements of the permutations of n-element set.

Let us consider n. The functor A_n yielding a strict groupoid is defined by the conditions (Def. 13).

- (Def. 13)(i) The carrier of A_n = the permutations of n-element set, and
 - (ii) for all elements q, p of the permutations of n-element set holds (the multiplication of A_n) $(q, p) = p \cdot q$.

Let us consider n. Note that A_n is non empty.

The following propositions are true:

- (23) idseq(n) is an element of A_n .
- (24) $p \cdot idseq(n) = p$ and $idseq(n) \cdot p = p$.
- (25) $p \cdot p^{-1} = idseq(n)$ and $p^{-1} \cdot p = idseq(n)$.
- (26) p^{-1} is an element of A_n .

Let us consider n. A permutation of n element set is an element of the permutations of n-element set. Note that A_n is associative and group-like.

The following proposition is true

$$(28)^1$$
 idseq $(n) = 1_{A_n}$.

Let us consider n and let p be a permutation of Seg n. We say that p is transposition if and only if:

(Def. 14) There exist i, j such that $i \in \text{dom } p$ and $j \in \text{dom } p$ and $i \neq j$ and p(i) = j and p(j) = i and for every k such that $k \neq i$ and $k \neq j$ and $k \in \text{dom } p$ holds p(k) = k.

We introduce p is a transposition as a synonym of p is transposition.

Let us consider n and let I_1 be a permutation of Seg n. We say that I_1 is even if and only if the condition (Def. 15) is satisfied.

(Def. 15) There exists a finite sequence l of elements of the carrier of A_n such that len $l \mod 2 = 0$ and $I_1 = \prod l$ and for every i such that $i \in \text{dom } l$ there exists q such that l(i) = q and q is a transposition.

We introduce I_1 is odd as an antonym of I_1 is even.

The following proposition is true

(29) $id_{Seg n}$ is even.

Let us consider K, n, let x be an element of K, and let p be an element of the permutations of n-element set. The functor $(-1)^{\operatorname{sgn}(p)}x$ yields an element of K and is defined as follows:

(Def. 16)
$$(-1)^{\operatorname{sgn}(p)}x = \begin{cases} i & x, \text{ if } p \text{ is even,} \\ -x, \text{ otherwise.} \end{cases}$$

Let *X* be a set. Let us assume that *X* is finite. The functor Ω_X^f yields an element of Fin *X* and is defined as follows:

(Def. 17)
$$\Omega_X^f = X$$
.

One can prove the following proposition

(30) The permutations of n-element set are finite.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. Springer-Verlag New York Inc., Seattle, Washington USA, Department of Mathematics University of Washington edition, 1974.

¹ The proposition (27) has been removed.

- [12] Katarzyna Jankowska. Matrices. Abelian group of matrices. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [14] Serge Lang. Algebra. PWN, Warszawa, 1984.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [17] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [18] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [19] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/group_4.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received May 20, 1992

Published January 2, 2004