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Summary. Some facts concerning matrices with dimension 2×2 are shown. Upper
and lower triangular matrices, and operation of deleting rows and columns in a matrix are
introduced. Besides, we deal with sets of permutations and the fact that all permutations of
finite set constitute a finite group is proved. Some proofs are based on [11] and [14].

MML Identifier: MATRIX_2.

WWW: http://mizar.org/JFM/Vol4/matrix_2.html

The articles [15], [8], [20], [21], [5], [7], [6], [2], [18], [19], [4], [17], [13], [3], [1], [12], [10], [16],
and [9] provide the notation and terminology for this paper.

1. SOME EXAMPLES OF MATRICES

For simplicity, we follow the rules:x, x1, x2, y1, y2 are sets,i, j, k, l , n, m are natural numbers,D is
a non empty set,K is a field,s is a finite sequence, anda, b, c, d are elements ofD.

The schemeSeqDExdeals with a non empty setA , a natural numberB, and a binary predicate
P , and states that:

There exists a finite sequencep of elements ofA such that domp = SegB and for
everyk such thatk∈ SegB holdsP [k, p(k)]

provided the parameters satisfy the following condition:
• For everyk such thatk∈ SegB there exists an elementx of A such thatP [k,x].

Let us considern, m and leta be a set. The functor

 a . . . a
...

...
...

a . . . a


n×m

yields a tabular finite

sequence and is defined by:

(Def. 1)

 a . . . a
...

...
...

a . . . a


n×m

= n 7→ (m 7→ a).

Let us considerD, n, m and let us considerd. Then

 d . . . d
...

...
...

d . . . d


n×m

is a matrix overD of

dimensionn× m.
The following proposition is true

(1) If 〈〈i, j〉〉 ∈ the indices of

 a . . . a
...

...
...

a . . . a


n×m

, then

 a . . . a
...

...
...

a . . . a


n×m

◦ (i, j) = a.
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In the sequela′, b′ are elements ofK.
Next we state the proposition

(2)

 a′ . . . a′

...
...

...
a′ . . . a′


n×n

+

 b′ . . . b′

...
...

...
b′ . . . b′


n×n

=

 a′+b′ . . . a′+b′

...
...

...
a′+b′ . . . a′+b′


n×n

.

Let a, b, c, d be sets. The functor

(
a b
c d

)
yielding a tabular finite sequence is defined as

follows:

(Def. 2)

(
a b
c d

)
= 〈〈a,b〉,〈c,d〉〉.

Next we state two propositions:

(3) len

(
x1 x2

y1 y2

)
= 2 and width

(
x1 x2

y1 y2

)
= 2 and the indices of

(
x1 x2

y1 y2

)
= [:Seg2,

Seg2:].

(4)(i) 〈〈1, 1〉〉 ∈ the indices of

(
x1 x2

y1 y2

)
,

(ii) 〈〈1, 2〉〉 ∈ the indices of

(
x1 x2

y1 y2

)
,

(iii) 〈〈2, 1〉〉 ∈ the indices of

(
x1 x2

y1 y2

)
, and

(iv) 〈〈2, 2〉〉 ∈ the indices of

(
x1 x2

y1 y2

)
.

Let us considerD and leta be an element ofD. Then〈a〉 is an element ofD1.
Let us considerD, let us considern, and letp be an element ofDn. Then〈p〉 is a matrix overD

of dimension 1× n.
The following proposition is true

(5) 〈〈1, 1〉〉 ∈ the indices of〈〈a〉〉 and〈〈a〉〉 ◦ (1,1) = a.

Let us considerD and leta, b, c, d be elements ofD. Then

(
a b
c d

)
is a matrix overD of

dimension 2.
The following proposition is true

(6)

(
a b
c d

)
◦ (1,1) = a and

(
a b
c d

)
◦ (1,2) = b and

(
a b
c d

)
◦ (2,1) = c and(

a b
c d

)
◦ (2,2) = d.

Let us considern and letK be a field. A matrix overK of dimensionn is said to be an upper
triangular matrix overK of dimensionn if:

(Def. 3) For alli, j such that〈〈i, j〉〉 ∈ the indices of it holds ifi > j, then it◦ (i, j) = 0K .

Let us considern and let us considerK. A matrix overK of dimensionn is said to be a lower
triangular matrix overK of dimensionn if:

(Def. 4) For alli, j such that〈〈i, j〉〉 ∈ the indices of it holds ifi < j, then it◦ (i, j) = 0K .

We now state the proposition

(7) For every matrixM overD such that lenM = n holdsM is a matrix overD of dimensionn
× widthM.
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2. DELETING OF ROWS AND COLUMNS IN A MATRIX

Let us consideri and let p be a finite sequence. The functorp�i yields a finite sequence and is
defined as follows:

(Def. 5) p�i = p·Sgm(domp\{i}).

One can prove the following three propositions:

(8) For every finite sequencep holds if i ∈ domp, then there existsm such that lenp = m+1
and len(p�i) = m and if i /∈ domp, thenp�i = p.

(9) For every finite sequencep of elements ofD holds p�i is a finite sequence of elements of
D.

(10) For every matrixM overK of dimensionn × m and for everyk such thatk ∈ Segn holds
M(k) = Line(M,k).

Let us consideri, let us considerK, and letM be a matrix overK. Let us assume thati ∈
SegwidthM. The deleting ofi-column inM yielding a matrix overK is defined by the conditions
(Def. 6).

(Def. 6)(i) len(the deleting ofi-column inM) = lenM, and

(ii) for everyk such thatk∈ domM holds (the deleting ofi-column inM)(k) = Line(M,k)�i .

One can prove the following propositions:

(11) For all matricesM1, M2 overD such thatM1
T = M2

T and lenM1 = lenM2 holdsM1 = M2.

(12) For every matrixM over D such that widthM > 0 holds len(MT) = widthM and
width(MT) = lenM.

(13) For all matricesM1, M2 overD such that widthM1 > 0 and widthM2 > 0 andM1
T = M2

T

and width(M1
T) = width(M2

T) holdsM1 = M2.

(14) For all matricesM1, M2 overD such that widthM1 > 0 and widthM2 > 0 holdsM1 = M2

iff M1
T = M2

T and widthM1 = widthM2.

(15) For every matrixM overD such that lenM > 0 and widthM > 0 holds(MT)T = M.

(16) For every matrixM overD and for everyi such thati ∈ domM holds Line(M, i) = (MT)�,i .

(17) For every matrixM overD and for everyj such thatj ∈ SegwidthM holds Line(MT, j) =
M�, j .

(18) For every matrixM overD and for everyi such thati ∈ domM holdsM(i) = Line(M, i).

Let us consideri, let us considerK, and letM be a matrix overK. Let us assume thati ∈ domM
and widthM > 0. The deleting ofi-row in M yields a matrix overK and is defined as follows:

(Def. 7)(i) The deleting ofi-row in M = /0 if lenM = 1,

(ii) width(the deleting ofi-row in M) = widthM and for everyk such thatk ∈ SegwidthM
holds (the deleting ofi-row in M)�,k = (M�,k)�i , otherwise.

Let us consideri, j, let us considern, let us considerK, and letM be a matrix overK of
dimensionn. The deleting ofi-row and j-column inM yields a matrix overK and is defined by:

(Def. 8) The deleting ofi-row andj-column inM =
{
(i) /0, if n = 1,

the deleting ofj-column in the deleting ofi-row in M, otherwise.
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3. SETS OF PERMUTATIONS

Let I1 be a set. We say thatI1 is permutational if and only if:

(Def. 9) There existsn such that for everyx such thatx∈ I1 holdsx is a permutation of Segn.

Let us observe that there exists a set which is permutational and non empty.
Let P be a permutational non empty set. The functor lenP yielding a natural number is defined

as follows:

(Def. 10) There existss such thats∈ P and lenP = lens.

Let P be a permutational non empty set. We see that the element ofP is a permutation of
SeglenP.

One can prove the following proposition

(19) There exists a permutational non empty setP such that lenP = n.

Let us considern. The permutations ofn-element set constitute a set defined by:

(Def. 11) x∈ the permutations ofn-element set iffx is a permutation of Segn.

Let us considern. One can check that the permutations ofn-element set is permutational and
non empty.

We now state two propositions:

(20) len(the permutations ofn-element set)= n.

(21) The permutations of 1-element set= {idseq(1)}.

Let us considern and letp be an element of the permutations ofn-element set. The functor lenp
yielding a natural number is defined as follows:

(Def. 12) There exists a finite sequences such thats= p and lenp = lens.

We now state the proposition

(22) For every elementp of the permutations ofn-element set holds lenp = n.

4. GROUP OF PERMUTATIONS

In the sequelp, q are elements of the permutations ofn-element set.
Let us considern. The functorAn yielding a strict groupoid is defined by the conditions

(Def. 13).

(Def. 13)(i) The carrier ofAn = the permutations ofn-element set, and

(ii) for all elementsq, p of the permutations ofn-element set holds (the multiplication of
An)(q, p) = p·q.

Let us considern. Note thatAn is non empty.
The following propositions are true:

(23) idseq(n) is an element ofAn.

(24) p· idseq(n) = p and idseq(n) · p = p.

(25) p· p−1 = idseq(n) andp−1 · p = idseq(n).

(26) p−1 is an element ofAn.

Let us considern. A permutation ofn element set is an element of the permutations ofn-element
set. Note thatAn is associative and group-like.

The following proposition is true
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(28)1 idseq(n) = 1An.

Let us considern and letp be a permutation of Segn. We say thatp is transposition if and only
if:

(Def. 14) There existi, j such thati ∈ domp and j ∈ domp andi 6= j andp(i) = j andp( j) = i and
for everyk such thatk 6= i andk 6= j andk∈ domp holdsp(k) = k.

We introducep is a transposition as a synonym ofp is transposition.
Let us considern and letI1 be a permutation of Segn. We say thatI1 is even if and only if the

condition (Def. 15) is satisfied.

(Def. 15) There exists a finite sequencel of elements of the carrier ofAn such that lenl mod 2= 0
and I1 = ∏ l and for everyi such thati ∈ doml there existsq such thatl(i) = q andq is a
transposition.

We introduceI1 is odd as an antonym ofI1 is even.
The following proposition is true

(29) idSegn is even.

Let us considerK, n, let x be an element ofK, and letp be an element of the permutations of
n-element set. The functor(−1)sgn(p)x yields an element ofK and is defined as follows:

(Def. 16) (−1)sgn(p)x =
{
(i) x, if pis even,
−x, otherwise.

Let X be a set. Let us assume thatX is finite. The functorΩf
X yields an element of FinX and is

defined as follows:

(Def. 17) Ωf
X = X.

One can prove the following proposition

(30) The permutations ofn-element set are finite.
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[7] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.
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